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Abstract:

The short stature homeobox-containing (SHOX) is the most frequently analysed gene in patients 

classified as short stature patients (ISS) or diagnosed with Leri-Weill dyschondrosteosis (LWD), Langer 

mesomelic dysplasia (LMD), or Madelung deformity (MD). However, clinical testing of this gene focuses 

primarily on single nucleotide variants (SNV) in its coding sequences and copy number variants (CNV) 

overlapping SHOX gene. This review summarizes the clinical impact of variants in noncoding 

regions of SHOX. 

Recent findings: CNV extending exclusively into the regulatory elements (i.e., not interrupting the 

coding sequence) are found more frequently in downstream regulatory elements of SHOX. Further, 

duplications are more frequent than deletions. Interestingly, downstream duplications are more 

common than deletions in patients with ISS or LWD but no such differences exist for upstream CNV. 

Moreover, the presence of specific CNVs in the patient population suggests the involvement of 

additional unknown factors. Some of its intronic variants, notably NM_000451.3(SHOX):c.-9delG and 

c.-65C>A in the 5´UTR, have unclear clinical roles. However, these intronic SNV may increase the 

probability that other CNV will arise de novo in the SHOX gene based on homologous 

recombination or incorrect splicing of mRNA. 

Summary: This review highlights the clinical impact of noncoding changes in the SHOX gene and 

the need to apply new technologies and genotype-phenotype correlation in their analysis. 



Background

Short stature homeobox-containing (SHOX; MIM *312865) is one of the most frequently analysed 

genes in patients classified as short stature patients (ISS) or diagnosed with Leri-Weill 

dyschondrosteosis (LWD), Langer mesomelic dysplasia (LMD), or Madelung deformity (MD). Each of 

these disorders are caused by different aberrations of the SHOX gene (Costantini et al 2021, Kurnaz et 

al 2018, Rappold et al 2006).  Recent studies have shown that aberrant SHOX is present in 5.0 % of ISS 

cases, up to 70 % of LWD cases, and in all LMD and MD cases (Capkova et al 2020, Binder et al 2004, 

Wit et al 2016, Shima et al 2016). Although the clinical impact of changes in the SHOX gene has been 

studied, such studies have focused mainly on changes occurring in its coding regions; the effects of 

changes in its regulatory/non-coding elements have received less attention (Hattori et al 2017, Dávid 

et al 2017). However, it is known that changes in non-coding regions can reduce gene expression and 

cause incorrect splicing of messenger RNA (mRNA) or misfolding of polypeptide strands (Kumar et al 

2018, Durand et al 2011). This review summarizes the published data on changes in the non-coding 

regions of SHOX and their impact on human growth. 

Constitution and expression of SHOX gene 

The human genome contains two copies of SHOX; one each on the X and Y chromosomes in males, and 

one on each X chromosome in females (Rao et al 1997). SHOX escapes X chromosome inactivation 

(also known as lyonization) during embryogenesis and exhibits biallelic expression in both genders. 

Both copies of the gene are needed for correct development (Carrel and Willard 2005).

SHOX has seven exons encoding amino acid sequences (excluding exon 1), five introns, three 

untranslated regions (5´UTR, SHOXa - 3´UTR, SHOXb - 3´UTR), and eleven regulatory regions (CNE-2, 

CNE-3, CNE-5, CNE2, CNE3, CNE4, CNE5, CNE6, CNE7, CNE8, CNE9). All of these regions are necessary 

for correct expression of the gene and folding of the resulting protein (Navaro et al 2021)(Fig. 1).

The expression of any gene starts with its transcription. Transcription is the complex process of copying 

a segment of DNA into pre-ribonucleic acid (pre-mRNA). Deoxyribonucleic acid (DNA) and pre-mRNA 

differ in their primary and secondary structure. The primary structure of DNA is defined by the order 

in which the bases (also known nucleotides) A (adenine), T (thymine), G (guanine), and C (cytosine) 

appear; in pre-mRNA, T is replaced by uracil (U). The order of the nucleotides is called the sequence of 

the DNA. The secondary structure is defined by the interactions between the nucleotides; in the case 

of DNA, these interactions cause the formation of a double-stranded structure whereas pre-mRNA is 

single-stranded (Xu et al 2020, Mohd et al 2021). Transcription is initiated by the binding of RNA 

polymerase II to DNA. Binding occurs at the 5´UTR (5´end of untranslated region) region of the gene, 

which is referred to as the promoter. Double-stranded DNA is untangled and serves as a template for 



the correct ordering of nucleotides in prepared pre-mRNA. The RNA polymerase then moves along the 

DNA, extending the pre-mRNA chain as it goes, until it reaches the 3´UTR (3´end of untranslated region) 

region of the gene, which contains a termination sequence recognized by the polymerase. This 

generates a pre-mRNA molecule that contains all of the gene’s exons, introns, and UTRs. The pre-

mRNA then undergoes a process known as splicing during which the introns and sometimes some 

exons are removed to form the final mRNA, which is known as the transcript. Different transcripts of 

the same gene may have different numbers of exons or the same exons in different orders. Although 

the splicing process can generate several different transcripts from a single gene, it is a highly 

controlled process that is governed by special sequences located at the borders between exons and 

introns that function as “barcodes” to guide the action of the spliceosome – the protein complex 

responsible for splicing (Griffiths et al 2000).

After translation, the mRNA is transported from the nucleus to the cytoplasm and translated. During 

translation, the mRNA’s nucleotide sequence (i.e. the order in which the nucleotides appear) is used 

to control the synthesis of proteins; sequences of three consecutive nucleotides known as triplets or 

codons within the mRNA encode specific amino acids (AA), which are bound together to form the 

protein. Each codon is specific for a particular AA. While the UTR regions and some exons (such as exon 

1 and part of exon 2 in the case of SHOX) are not translated, their presence is important for successful 

translation (Griffiths et al 2000)(Fig. 2).

Two major SHOX transcripts have been reported. Transcript variant 1 (NM_000451.3, 7934 nt, 878 

amino acids) is produced preferentially and corresponds to the longer SHOXa form of the gene, while 

variant 2 encodes the SHOXb form (SHOX transcript variant 2, NM_006883.2). Both transcripts include 

exons 1-5 but they differ in the last exon: SHOXa lacks exon 7, while SHOXb lacks exon 6 (Binder et al 

2005, Oliveira et al 2011) (Fig. 2). Other SHOX mRNAs have also been identified but are only weakly 

expressed in most tissues and their effects are unclear (Durand et al 2011). 

The resulting SHOX protein has been detected in prehypertrophic and hypertrophic chondrocytes of 

fetal and childhood growth plates by immunohistochemistry (Beiser et al 2014). Additionally, it was 

identified as a growth regulator that functions as a transcriptional activator of genes including 

Natriuretic peptide B (NPPB) as well as a repressor of other genes including Fibroblast growth factor 

receptor 3 (FGFR3) (Yokokura et al 2017, Rappold et al 2012). Functional studies have shown that the 

SHOX protein can induce growth arrest and apoptosis, suggesting that it may regulate chondrocyte 

hypertrophy by inducing apoptosis (Hristov et al 2014). Furthermore, SHOX interacts with SOX5 and 

SOX6. This interaction regulates aggrecan, which is a key factor of chondrogenesis that plays an 

important role in cartilage matrix synthesis (Jee et al 2018, Aza-Carmona et al 2011).



In addition to being expressed in growth-related tissues, SHOX is expressed in the developing limb bud 

at Carnegie stage 14 (33 days post-conception). Its mRNA has also been detected in muscles, skin, and 

several neural tissues including the brain, spinal cord, eye, meninges, cerebellum, thalamus, and basal 

ganglia of embryos and foetuses. In adult tissues, SHOX has been detected in the bone marrow, 

adipose tissue, placenta and skeletal muscle as well as the thalamus, cerebellum, and frontal cortex 

(Durand et al 2011).

The SHOX gene includes approximately 35 thousand nucleotides (Stelzer et al 2016). However, clinical 

studies on its effects have focuses mainly on its coding regions (SHOXa = 7.9 kb, SHOXb = 1.9 kb), i.e. 

the regions that encode the polypeptide sequence of the protein produced by its translation (Landrum 

et al 2018). It is believed that approximately 80 % of genetic disorders are caused by coding 

abnormalities (Jackson et al 2018). Base pair changes in genes can be analysed using sequencing 

technique such as Sanger sequencing (SS) or next generation sequencing (NGS) methods (Lashari et al 

2013, Lee et al 2021, Capkova 2020, Wit et al 2016, Shima et al 2016). However, conventional G-

banding and karyotyping are used to classify the X and Y chromosomes on which SHOX is located (Yunis 

et al 1978).

Although it may seem at first glance that the SHOX gene has been studied relatively thoroughly, it is 

important to realise that only specific aspects of its variability have actually been studied. Additionally, 

some of the reported findings concerning its effects lack detailed information on the associated clinical 

phenotype or on other important issues (Firth et al 2009, Stelzer et al 2016). 

Clinical phenotype of SHOX haploinsufficiency

Patients with SHOX deficiencies are characterized by decreased cortical volumetric bone mineral 

density and cortical thickness together with enlarged diaphysis (Soucek et al 2013). Histopathological 

testing can be used to clarify the diagnosis of such patients based on the disruption of the growth 

plates and their architecture and the (ir)regularity of chondrocyte stacking (Beiser et al 2014). 

Additionally, SHOX overexpression is known to cause blockage of the cell cycle, arresting proliferation 

and inducing apoptosis of hypertrophic chondrocytes in the epiphyseal growth plate (Binder et al 

2011).

Two functional copies of SHOX are needed for correct development of the long bones in humans. If 

one copy of SHOX is damaged (heterozygous), Leri-Weill dyschondrosteosis (LWD, OMIM: 127300) is 

observed. Langer mesomelic dysplasia (LMD, MIM: 249700) occurs when both copies of SHOX are 

damaged (homozygous) (Ogushi et al 2019, Schneider et al 2005, Tung et al 2018; Benito-Sanz et al 

2012, Costantini et al2021). 



These genotypes have been linked to intellectual disability, autism, and language impairment in some 

cases, but there is little evidence indicating that these are general consequences of such deficiencies 

(Firth et al 2009, Tropeano et al 2016). Aberrations in SHOX expression are identified as the cause of 

idiopathic short stature (ISS; OMIM 300582) in 1.9 - 22.2 % of all cases, but the severity of the condition 

is highly variable; in some cases, it causes severe growth impairment while in others the individual’s 

height remains within the normal range. Abnormal body proportions may also result, resulting in a 

sitting height/height ratio for age and sex (SH/H SDS) above 2 (Binder et al 2005). Other minor 

abnormalities may also be observed in subjects with ISS and SHOX deficiency such as shortening of the 

fourth and fifth metacarpals, a high-arched palate, increased angle of the elbow, scoliosis, and 

micrognathia (Faienza et al 2021, Binder et al 2005).

Regulatory regions of SHOX (CNE)

Regulatory elements of genes may be either enhancers or repressors, and they can be located at some 

distance from the gene itself (Chatterjee et al 2017). These elements are essential for controlling gene 

expression and for allowing genes to be expressed at different levels in different tissues (Chen et al 

2009). Many of them are highly evolutionarily conserved, occurring in distantly related species such as 

chicken and zebrafish, and are therefore termed conserved non-coding elements or CNEs (Durand et 

al 2010, Kenyon et al 2011). 

The existence of regulatory elements that are widely separated from the SHOX gene has been 

suggested but their number and location remain to be elucidated. Moreover, the effects of such CNEs 

on clinical phenotype are unclear (Durand et al 2010). 

Three upstream regulatory regions of SHOX have been identified (CNE-2, CNE-3, CNE-5) along with 

eight conserved non-coding DNA elements (CNE2, CNE3, CNE4, CNE5, CNE6, CNE7, CNE8, CNE9) 

(Fukami et al 2006, Chen et al 2009, Durand et al 2010, Verdin et al 2015, Homma et al 2018)(Tab. 1).

CNVs that disrupt CNEs could potentially have phenotypic effects similar to that of changes in the gene 

itself. Recent studies have shown that the frequency of CNVs is somewhat higher in the downstream 

elements of SHOX than in its upstream elements, and that duplications are more frequent than 

deletions (Shima H et al 2018, Fukami et al 2006). However, other studies found that deletions of 

downstream elements are rarer than duplications in patients with ISS or LWD (deletions = 27, 

duplications = 12) but that no such difference existed among CNVs in upstream elements Capkova et 

al 2020, Shima H et al 2018, Chen J et al 2009 Sandoval GT et al 2014, Benito-Sanz S et al 2006)(Tab. 

2). Other studies have found that the frequency of CNVs in CNEs is 10 – 24 times higher in LWD patients 

than in ISS patients (ISS = 1.28 % - 1.61 %, LWD = 12.5% - 38.46 %) (Shima H et al 2018, Chen J et al 

2009, Sandoval GT et al 2014, Benito-Sanz S et al 2006, Bunyan et al 2013)(Tab.2). ISS, MD, LWD, 



microcephalus and disproportionate growth have been reported in patients with CNV in downstream 

CNE. However, these variants are also detected in the healthy population (Chen J et al 2009, Fukami 

et al 2006, Capkova et al 2020).

Untranslated regions (UTR)

The untranslated regions (UTRs) are the sequences on either side of a gene’s coding sequence. They 

are transcribed to pre-mRNA despite not encoding amino acids (Hinnebusch et al 2016). The UTR on 

the 5' side of the gene is called the 5'UTR or leader sequence and is critical for binding to the ribosome 

and recognition of the start coding. Accordingly, it strongly affects translation efficiency and helps 

shape the cellular proteome (Hinnebusch et al 2016). The UTR on the 3' side is called the 3'UTR or 

trailer sequence, and is a powerful regulatory element that determines the rate at which protein 

translation proceeds (Schwerk et al 2015).

The 5'UTR region is the major determinant controlling the initial steps of protein expression 

(Hinnebusch et al 2016). The SHOXa and SHOXb mRNAs both include the 5'UTR located upstream of 

the gene, which consists of the non-coding exon 1 and part of exon 2. It is 694 nucleotides in length 

and has a GC content of 63 %. Interestingly, it contains 7 AUG triplets, each of which is associated with 

different open reading frames (ORFs). In addition, its Gibbs free energy of folding is high (ΔG = -282 

kcal/mol), indicating that it has a highly stable secondary structure, suggesting that the 5’UTR plays a 

key regulatory role (Blaschke et al 2003).

Although hundreds of variants in the 5´UTR region have been recorded in genetic databases 

(TOPMED 2021, Karczewski et al 2020, Kopanos et al 2019), only 14 have been associated with 

ISS (Landrum et al 2018, Alharthi et al 2017, Solc et al 2014, Babu et al 2021)(Tab. 3). The 

pathogenicity of these variants was estimated using different prediction tools and functional 

studies on animal models (McLaren et al 2016, Babu et al 2021, Kopanos et al 2019, TOPMed 

2021). Three of them (NM_000451.3(SHOX):c.-646_-645insTGT, c.-51G>A, and c.-19G>A) are 

considered to be likely pathogenic/pathogenic (Landrum et al 2018). This conclusion is supported 

by their frequency in the population and the 0 % frequency of homozygotes in the population 

(Kopanos et al 2019, TOPMed 2021). Additionally, the Ensembl Transcript Support Level tool (TSL) 

suggests that the mRNA sequences containing these SNV have secondary structures with low 

stability. A link between these SNVs and decreased SHOX expression was confirmed by a 

functional study on the c.-51G>A and c.-19G>A mutations (Kopanos et al 2019, Babu et al 2021). 

In contrast, the likely benign/benign variants NM_000451.3(SHOX):c.-58G>A, c.-55C>T, and c.-

19G>C are frequent in the population, exist in homozygous form, and the stability of the 

corresponding transcripts is supported by TSL (Kopanos et al 2019, TOPMed 2021). In addition, a 



functional study confirmed that these variants have no effect on SHOX expression (Babu et al 

2021). Similarly, the variants NM_000451.3(SHOX): c.-644T>G, c.-512C>A, c.-507G>C, c.-372G>A, 

and c.-112G>A are likely benign/benign because it was shown that their frequency in ISS patients 

is not significantly greater than in the general population (Solc et al 2014). 

However, two variants have an as-yet unknown role in ISS patients. NM_000451.3(SHOX):c.-

9delG was confirmed to reduce SHOX expression in an animal model (Babu et al 2021) but it was 

considered as likely benign by Landrum et al. (2018) with a frequency 0.0437 % (Kopanos et al 

2019). Homozygosity is not observed for the second variant in this group, c.-65C>A, and its 

frequency in the population is low, ranging from 0,000378 to 0.00319 % (Kopanos et al 2019, 

TOPMed 2021).

SHOXa and SHOXb have different 3´UTRs (3´UTR-a and 3´UTR-b, respectively). 3´UTR-a derives from 

exon 6 (3´UTR-a, length: 2187 nt) and does not include exon 7, which encodes 3´UTR-b. Conversely, 

3´UTR-b derives from exon 7 (3´UTR-b, length: 582 nt) and excludes exon 6 (Uhlen et al 2017). The 

number of variants in the 3´UTRs is lower than in the 5´UTR and their frequency in the population is 

between 0.000378% - 56 % (TOPMed 2021). To date, 3´UTRs variants have not been associated with 

ISS patients in databases or the literature (Landrum et al., 2018). 

Introns

Introns are non-coding sequences within genes located between the exons; they are typically excised 

from the pre-mRNA after transcription during the splicing process. Splicing allows the creation of 

multiple forms of the SHOX mRNA, and its is possible that intronic variants could adversely affect the 

splicing process, resulting in the production of incorrect mRNA or interchromosomal rearrangement 

(Garrido-Martín et al 2021). The SHOX gene contains 5 introns, with intron 5 being interrupted by the 

alternative terminal exon 6a (Navarro et al 2021). 

Repetitive parts (Alu elements belonging to the interspersed repeat sub-family of endogenous 

retrovirus group K (ERVK)) have been identified as the cause of deletions/duplications of SHOX during 

non-homologous/homologous recombination. Alu elements were identified mainly in introns 3 

(comprising 13.76 % of the intron sequence) and 5 (12.90 % of the intron sequence). These introns 

exhibit 78 % homology, which could lead to deletions/duplications of exons 4 and 5 or downstream 

regions by homologous recombination. Additionally, there is a non-homologous downstream locus 

containing an interspersed repeat belonging to the ERVK sub-family that causes the exclusion of exon 

6a. Approximately half of the detected partial deletions/duplications in SHOX are due to hot spots in 

intron 3. The deletions have been associated with LWD and ISS, while duplications are linked to Mayer-



Rokitansky-Kuster-Hauser Syndrome and autism spectrum disorders (Benito-Sanz S et al 2017, 

Alexandrou et al 2016).

Single nucleotide variants (SNVs) located near exon-intron boundaries can also adversely affect pre-

mRNA splicing. Of the known splicing variants of SHOX (TOPMED 2021, Landrum et al 2018), only 

c.544+1G>A and c.278-1G>C have been associated with ISS (Kumar et al 2020, Landrum et al 2018). 

Two variants, c.634-3C>T (3 tools, NM_000451.3) and c.486+3A>G, c.634-7C>T (2 tools, 

NM_000451.3), were identified as the most probable sources of splicing variants by the PredictSNP2 

predictor which uses five tools (CADD, DANN, FATHMM, FunSeq2, GWAVA) (Bendl et al 2016).

Effect of variants in the SHOX gene on the treatment of patients with LMD, LWD, and ISS

According to the clinical guidelines, prepuberal children with short stature and haploinsufficiency of 

SHOX gene could be treated with growth hormone replacement therapy (Grimberg A., 2016). The 

SHOX gene haploinsufficiency could be caused by pathogenic or likely pathogenic variants (CNV, SNV, 

indel) in coding sequence as well as in non-coding regions. Up to date, there were only few pathogenic 

variants in non-coding regions published (Babu D., 2021). Patients with these variants and ISS could 

have clinical benefit from the growth hormone therapy. However, further research is needed to reveal 

the genotype-phenotype correlation of variants in non-coding regions of SHOX gene.    

Conclusions

This review summarises recent findings concerning molecular defects of the SHOX gene in patients 

with LMD, LWD, and ISS and the phenotype-genotype spectrum of SHOX deficiency. Most recently 

reported studies have focused on CNVs that overlap in whole or in part with the gene itself or critical 

CNEs and SNV in coding exons (Gürsoy et al 2020). This review complements the existing literature by 

focusing on genomic changes that do not interrupt the coding sequences of the SHOX gene.

The pathogenic impact of CNV overlapping with regulatory elements together with coding sequences 

of SHOX can be explained by disruption of the gene’s coding exons (Durand et al 2010, Fukami et al 

2006, Chen et al 2009). However, the impact of CNV that overlap only with regulatory elements 

remains unclear, with the exception of deletions of upstream CNEs (Benito-Sanz et al 2016). In 

accordance with expectation, CNVs are more frequent in downstream regions than upstream regions. 

However, surprisingly, deletions are more common than duplications in the downstream region 

(Benito-Sanz et al 2016). This may reflect some bias in the literature; deletions are more frequently 

discussed and their clinical impact is often more serious than that of duplications. Although 

duplications are often considered to cause only mild or non-clinical phenotypes, some studies have 

provided information on them. For example, whereas deletions were associated with ISS and LWD, 



duplications were described in patients with global developmental delay, cognitive impairment, 

language impairment, and autism (Hirschfeldova et al 2017, Solc et al 2014). This correlates with the 

assumption of higher expression of the SHOXb form in the nervous tissues during embryonal 

development (Durand et al 2011). Numbers of these variants are inherited and genomic studies have 

shown that they also occur in the healthy population. However, the possible impact of variable 

expression and reduced penetrance should be considered as well as additional unknown factors in the 

genome (Fukami et al 2015, Chen et al 2009, Capkova et al 2020). 

Whereas CNVs are rarely found in upstream regions, SNVs in the 5´UTR, exon 2, and part of exon 1 of 

SHOX are frequently associated with ISS. Conflicting interpretations have been reported for c.-9delG, 

whose effect is currently unknown. However, a recent study indicates that its presence reduces SHOX 

expression (Babu et al 2021). The effects of c.-512C>A and c.-507G>C are also the subject of debate 

(Babu et al 2021, Kopanos et al 2019, Landrum et al 2018, Karczewski et al 2020). Both variants 

appeared together in one patient, suggesting that their co-occurrence may cause ISS (Landrum et al 

2018). 

The SHOX gene contains Alu repetitive sequences with the potential to cause deletions or 

duplications of the gene (in whole or in part) in introns 3 and 5. A combined partial deletion of 

SHOX and frameshift variant in exon 6a was reported in a patient with LWD (Benito-Sanz et al 

2017). Additionally, splice variants are most frequently located in introns 3 and 5 (NM_000451.3: 

c.486+3A>G, 634-3C>T, and c.634-7C>T). Similar SNVs have also been observed in intron 4 and intron 

1 (c.544+1G>A and c.278-1G>C, respectively) (Solc et al 2014, Alharthi et al 2017, Babu et al 2021, 

Kopanos et al 2019). 

This review summarizes current knowledge about genomic changes of the SHOX gene that do not 

interrupt coding regions and highlights their important roles in ISS or LWD. There is considerable 

uncertainty about the impact of several of these changes, indicating that further functional and 

clinical studies in this area are needed. 
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Legends for Figures and Tables:

Table 1: Coordinates of CNEs of SHOX gene.

Table 2: Descripted deletion/duplication of non-coding regions of SHOX.

Table 3: Variants in 5´UTR associated with clinical phenotype.

Figure 1: Structure of SHOX gene and it´s non-coding variants in 5´UTR and introns resulted as 

pathogenic (red) and unknown/possible pathogenic (brown).

Figure 2: Description of transcription, splicing and translation of SHOX gene.



Tables:

Table 1:

 CNEs NCBI36/hg18 GRCh37/hg19 GRCh38/hg38
Telomere

CNE-5 318 357-318 950 398 357-398 950 437 622-438 215

CNE-3 380 279-380 664 460 279-460 664 499 544-499 929
U

ps
tr

ea
m

CNE-2 436 610-437 229 516 610-517 229 555 875-556 494
Gene SHOX 505 079-527 558 585 079-607 558 624 344-646 823

CNE2 588 305-588 743 668 305-668 743 707 570-708 008

CNE3 614 440-615 062 694 440-695 062 733 705-734 327

CNE4 634 084-634 753 714 084-714 753 753 349-754 018

CNE5 670 824-671 850 750 824-751 850 790 089-791 115

CNE6 685 864-686 360 765 864-766 360 805 129-805 625

CNE7 700 700-701 220 780 700-781 220 819 965-820 485

CNE8 731 550-732 300 811 550-812 300 850 815-851 565

CNE9 754 740-755 572 834 740-835 572 874 005-874 837

Do
w

ns
tr

ea
m

"down" 770 581-949 698 850 581-1 029 698 889 846-1 068 963

Ch
ro

m
os

om
e 

X

Centromere

Table 2:

Upstream of SHOX Downstream of SHOX
References Structure 

of cohort
Large of 
cohort Deletion Duplication Deletion Duplication

Capkova et al 2020 ISS/LWD 174 0 1 1 7
Hirschfeldova et al 2017* ISS/LWD 352 0 1 0 5
Bunyan et al 2016* ISS/LWD 1200 0 2 0 10
Fukami et al 2015 ISS/LWD 245 0 0 0 1

ISS 312 1 0 1 2
Shima H et al 2018

LWD 16 0 0 1 1
ISS 735 0 0 10 0

Chen J et al 2009
LWD 58 0 0 14 0

Sandoval GT et al 2014 ISS 62 0 0 0 1
Benito-Sanz S et al 2006 LWD 26 0 0 10 0

Total 3154 1 4 27 27
* deletion excluded, ISS-idiopatic short stature, LWD-Leri-Weill dyschondrosteosis 



Table 3:

Pozition Identification Pathogenity in ClinVar BRAVO Frequency in 
Varsome

Homozygotes 
in Varsome Citations

NM_000451.3(SHOX):c.-649C>G Likely benign 0.00264% N/A N/A Landrum et al 201 8#
NM_000451.3(SHOX):c.-646_-645insTGT/TTG Pathogenic 0.00038% N/A N/A Alharthi et al 2017
NM_000451.3(SHOX):c.-644T>G N/A 0.00189% N/A N/A Solc et al 2014

NM_000451.3(SHOX):c.-512C>A Pathogenic/bpn 0.04870% >0,05 % yes
Alharthi et al 2017, Solc et al 
2014Ex

on
 1

NM_000451.3(SHOX):c.-507G>C Pathogenic/bpn >0,05 % >0,05 % yes
Alharthi et al 2017, Solc et al 
2014

NM_000451.3(SHOX):c.-372G>A Uncertain significance >0,05 % >0,05 % yes
Alharthi et al 2017, Solc et al 
2014

NM_000451.3(SHOX):c.-112G>A N/A N/A N/A N/A Solc et al 2014
NM_000451.3(SHOX):c.-65C>A Uncertain significance 0.00038% 0.00319 % no Landrum et al 2018 #
NM_000451.3(SHOX):c.-58G>A Likely benign 0.00076% N/A N/A Babu et al 2021
NM_000451.3(SHOX):c.-55C>T Likely benign 0.00038% >0,05 % no Babu et al 2021
NM_000451.3(SHOX):c.-51G>A Likely pathogenic N/A 0.000404 % no Babu et al 2021
NM_000451.3(SHOX):c.-19G>A Likely pathogenic 0.00038% 0.000803 % no Babu et al 2021
NM_000451.3(SHOX):c.-19G>C Benign >0,05 % >0,05 % yes Landrum et al 2018 # #

Ex
on

 2

NM_000451.3(SHOX):c.-9delG Likely benign N/A 0.0437 %* no Babu et al 2021
 * frequency in Finish european population 0.00462 %, N/A not available, Origin of variants in ClinVar were: # Bioscientia Institut fuer Medizinische Diagnostik 
GmbH,Sonic Healthcare, 2020; ## Athena Diagnostics Inc, 2017
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Abbreviations list 
CNEs conserved non-coding elements  
CNVs copy number variants  
DNA deoxyribonucleic acid 
ERVK endogenous retrovirus group K  
FGFR3 Fibroblast growth factor receptor 3 
ISS idiopathic short stature  
LMD Langer mesomelic dysplasia  
LWD Leri-Weill dyschondrosteosis  
MD Madelung deformity  
mRNA messenger RNA  
NPPB Natriuretic peptide B  
RNA ribonucleic acid 
SHOX short stature homeobox-containing  
SNVs single nucleotide variants  
UTRs Untranslated regions 

 

 

 



 

 

Clinical impact of variants in non-coding regions of SHOX - current knowledge. 

 Noncoding variants of SHOX have a similar clinical impact as coding variants
 CNVs of the regulatory elements are more frequently downstream of the SHOX gene 
 Duplications of SHOXs´ downstream are more frequent than deletions 
 Intronic variants may cause de novo CNV of SHOX 




