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Abstract

Bacterial transcription regulation is critical for adaptation and survival. CarD is an essential transcription factor in mycobacteria involved in the
regulation of gene expression. We searched for CarD interaction partners in Mycobacterium smegmatis and identified a novel uncharacterized
protein, named CrsL (MSMEG_5890). CrsL is a 5.7 kDa protein shown by NMR to be intrinsically disordered. CrsL homologs are present
in actinobacteria, including pathogenic species such as Mycobacterium tuberculosis. CrsL interacts directly with CarD, adopting an ordered
structure in the complex, and also binds RNAPR controlling CarD-RNAP association. ChIP-seq showed that CrsL associates with the promoters of
actively transcribed genes and ~75% of these regions are also associated with CarD. RNA-seq revealed ~50% and ~66 % overlap in differentially
expressed genes between CrsL and CarD knockdowns during the exponential and stationary phases, respectively. Among Crsl:-regulated genes
are DesA desaturase (MSMEG_5773) and DEAD/DEAH-box RNA helicase MSMEG_1930, which contribute to cold stress adaptation. CrsL
supports the growth of M. smegmatis at elevated temperature but limits growth in cold environments. In summary, these findings identify CrsL
as a novel, conserved CarD-interacting protein playing a key role in mycobacterial stress responses by modulating CarD function.
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Introduction

Mycobacteria belong to the actinobacteria and include slow-
growing species such as Mycobacterium tuberculosis, which
is responsible for tuberculosis, as well as many rapidly grow-
ing nontuberculous species that can cause various infections.
Certain nontuberculous mycobacteria are capable of growth
in environments with a wide range of temperatures, includ-
ing the water circuits of heater-cooler units—medical devices
that control the patient’s body temperature during open-heart
surgery. Mycobacterium chimaera was reported to infect pa-
tients during cardiac surgeries when they are exposed to con-
taminated aerosols from these units [1, 2]. Like other bacte-
ria, mycobacteria rely on transcriptional regulation to survive
varying temperatures and environmental challenges. In this
study, we examined transcriptional regulation in Mycobac-
terium smegmatis, a well-established model for investigating
these regulatory mechanisms in mycobacteria.

Bacterial transcription involves the synthesis of RNA from
a DNA template, a process mediated by a single type of DNA-
dependent RNA polymerase (RNAP) [3]. The RNAP core con-
sists of several subunits («2B3’w) [4]. These subunits asso-
ciate with a sigma (o) factor to form the RNAP holoenzyme,
that can recognize promoter sequences and initiate transcrip-
tion [5-7]. All bacteria have one primary o factor 7, 8]. The
primary o factor in mycobacteria is o* and is essential for
bacterial growth [9, 10]. In addition to o, the mycobacterial
alternative o factor o® recognizes similar promoter sequences
to 0, and consequently, the regulons of these o factors partly
overlap [11-14]. Furthermore, o® regulates stress-responsive
genes [15-17].

The mycobacterial transcription machinery requires the ad-
ditional transcription factors, RbpA and CarD, which are not
present in Escherichia coli [18,19]. These factors are essential
global regulators in both M. smegmatis and M. tuberculosis
[20-24].

RbpA consists of four domains and binds to RNAP contain-
ing either 0 or o®, but not the other alternative o factors [20,
25-27]. It assists in promoter unwinding and the formation
of the catalytically active open complex [11, 23]. RbpA was
proposed to modify the structure of the RNAP core, increas-
ing the competitiveness of the o over the alternative o factors
[27]. Additionally, RbpA has been suggested to play a role in
the release of rifampicin from RNAP and is also involved in
the stress response [22, 27-30].

CarD consists of two domains. The CarD N-terminal do-
main has a conserved structure and interacts with RNAP
(RNAP interaction domain, RID), while the C-terminal do-
main (CTD) binds to DNA (DNA-binding domain, DBD)
[31]. CarD affects formation/stability of the open complex in
a promoter-dependent manner [32]. It acts as a global tran-
scription regulator [31-35] and regulates many genes includ-
ing ribosomal RNAs encoding genes [33, 36]. Mycobacterial
growth is altered when CarD function is disrupted by muta-
tions targeting the RID, the DBD, or a conserved tryptophan
residue (Trp85) [36]. Furthermore, weakening the mycobacte-
rial RNAP-CarD interaction results in cells being more sensi-
tive to stress conditions, including oxidative stress, DNA dam-
age, and the effects of certain antibiotics [37, 38]. The level of
CarD decreases during stationary phase and starvation. This
decrease is mediated by carD antisense RNA and Clp protease
[38].

Apart from CarD and RbpA, mycobacteria contain a
unique ~300 nt long Ms1 RNA [39]. Ms1 RNA is highly ex-

pressed during the stationary phase of M. smegmatis growth,
interacting directly with the RNAP core without any o fac-
tor to regulate the RNAP level in M. smegmatis [40,41]. Ms1
has homologs in various actinobacterial species [42], includ-
ing MTS2823 RNA, which is highly expressed in M. tubercu-
losis [43] and interacts with RNAP [44].

The aim of this study was to expand our knowledge of
the mycobacterial transcription machinery by searching for
CarD interaction partners in M. smegmatis. We identified
a novel CarD interaction partner, CrsL. First, we validated
the CrsL-CarD interaction and demonstrated that both pro-
teins can associate with RNAP. CrsL tightly associates with
CarD and influences its interaction with RNAP. We charac-
terized the structure of CrsL, defined its binding sites across
the chromosome and determined the effects of CrsL deple-
tion on the transcriptome and the bacterial growth. CrsL reg-
ulates genes involved in temperature adaptation and promotes
mycobacterial growth at elevated temperatures. Overall, our
data suggest that CrsL is a novel mycobacterial transcription
regulator.

Materials and methods

Construction of the bacterial strains

A detailed description of all bacterial strains, their construc-
tion, and the oligonucleotide sequences is provided in the Sup-
plementary Data.

Bacterial growth conditions

M. smegmatis mc> 155 strains were grown on Middlebrook
7H10 (Difco) for 2-3 days at 37°C. When required, the media
was supplemented with the following antibiotics: kanamycin
(20-25 pg/ml) or hygromycin (50 pg/ml). The strains were in-
oculated into an overnight culture of Middlebrook 7H9 media
(Difco), supplemented with 0.2% glycerol and 0.05% Tween
80 at 37°C. The overnight cultures were then diluted to ODggg
0.1 and allowed to grow to the exponential phase (ODgg
~0.5; 6 h of growth) or the early stationary phase (ODgg
~2.5-3; 24 h of growth).

FLAG-tagged and CRISPR knockdown strains: The strains
were inoculated to ODggg 0.1. For exponential phase sam-
ples (6 h growth, ODgoo ~0.5), anhydrotetracycline (ATc) was
added 3 h after inoculation in different concentrations: 100
ng/ml (for the CRISPR strains), 10 ng/ml (for ChIP-seq and
IP), 25 ng/ml (for overexpression), or 1 ng/ml (for CarD-
FLAG optimization), and cells harvested after an additional 3
h. For the stationary phase (24 h growth, ODgoo ~2.5-3), ATc
was added 8 h after inoculation, and the cells harvested after
16 h later. For CarD-FLAG optimization, the ATc (1 ng/ml)
was added after 21 h and the cells harvested after 3 h later.

For the growth curves at low or elevated temperatures,
overnight cultures of the wt, AcrsL, and AcrsL + crsL strains
were grown at the optimal temperature (37°C). After dilu-
tion to ODgpp ~0.1, the cells were grown at 37°C, 45°C, or
16°C. Initially, overnight cultures of 7cWT and crsL knock-
down strains were grown at the optimal temperature (37°C)
with ATc (100 ng/ml) for ~16 h to deplete CrsL. These cul-
tures were then diluted to ODggp ~0.1 in 7H9 media with ATc
(100 ng/ml). Six hours after inoculation, the temperature was
raised to 45°C, after which the cells were cultivated for ~35 h.
The cells were grown in a Biosan RTS-8 Multi-Channel Biore-
actor, and the ODggp was measured throughout the growth
period.



Immunoprecipitation (FLAG pulldown)

60-120 ml of M. smegmatis cells in the exponential and sta-
tionary phases were pelleted, washed in lysis buffer (20 mM
Tris—=HCI, pH 7.9, 150 mM KCl, and 1 mM MgCl,) and pel-
leted again. The cells were then stored at —80°C. The pellets
were then resuspended in 3 ml of Lysis buffer supplemented
with phenylmethylsulfonyl fluoride (PMSF) and Protease in-
hibitor cocktail [20 mM Tris-HCI pH 7.9, 150 mM KCI,
1 mM MgCl,, 1 mM dithiothreitol (DTT), 0.5 mM PMSE,
Protease Inhibitor Cocktail Set III protease inhibitors (Cal-
biochem)], sonicated 15 x 10 s with 1 min pauses on ice and
centrifuged at 8960 x g for 15 min at 4°C. An equal amount of
cell lysates (2-4 mg of proteins) from the FLAG-tagged strains
was incubated for 16-18 h overnight at 4°C with 10-25 ul of
M2 anti-FLAG resin (Sigma-Aldrich). The protein complexes
captured on the agarose gel beads were then washed 4 x with
0.5 ml of lysis buffer. The FLAG-tagged proteins were eluted
by 60 ul of 3 x FLAG Peptide (Sigma F4799), diluted in Tris-
buffer saline (TBS: 50 mM Tris—=HCI pH 7.5, 150 mM NaCl)
to a final concentration of 150 ng/ml. Alternatively, the FLAG-
tagged proteins were released by boiling the beads in 4x SDS
sample buffer for S min at 95°C. The proteins captured in the
complexes were resolved on SDS-PAGE gels (Nu-PAGE, 4-
12% Bis—Tris precast gels, Invitrogen) and stained using Sim-
plyBlue SafeStain (Invitrogen) or stained with silver (Pierce
Silver Stain Kit for Mass Spectrometry) or a SilverQuest Sil-
ver Staining Kit (Thermo Fisher Scientific), and/or analyzed
by western blotting. The identity of the protein bands was de-
termined by MALDI-FTICR mass spectrometry, as previously
described [45].

Crsl-His protein purification for in vitro assay and
antibody production

The E. coli strains used for protein purification, CarD-
NT (LK3209), CrsL-His (LK3499), and DnaK-His (JH185),
were inoculated into overnight cultures in LB medium at
37°C. These cultures were then diluted to ODggg 0.03 into
the LB medium with ampicillin (100 pg/ml) and shaken at
120 rpm at 37°C for ~3 h (until ODgyy ~0.6). Expres-
sion was then induced with 0.8 mM IPTG (Isopropyl B-D-
thiogalactopyranoside). The temperature was then lowered
to room temperature (~20°C) and the cultures were shaken
for an additional 3 h. The cultures were cooled and cen-
trifuged using a Beckman Coulter JA-10 rotor at 4°C, 6000
x g for 10 min. The pellets were resuspended in 1x T-buffer
(300 mM NaCl, 50 mM Tris-HCI pH 7.5, and 5% glyc-
erol), then centrifuged 5400 x g for 10 min, and the pellets
were stored in —80°C. For DnaK purification, 1x P-buffer
(300 mM NaCl, 50 mM Na,;HPOy4, 5% glycerol, 3 mM -
mercaptoethanol, and 0.1 mM PMSF) was used instead of 1x
T-buffer throughout the procedure. The pellets were sonicated
(Sonopuls HD3100, Bandelin [Germany]; 50% amplitude, 15
x 10 s pulse, 1 min pause on ice) in 1x T-buffer (supple-
mented with 3 mM B-mercaptoethanol). The samples were
centrifuged at 27 000 x g, 4°C (Beckman Coulter, JA 25-50
rotor) for 10 min, and the cell lysates were incubated with 1
ml of prewashed Ni-NTA Agarose beads (QIAGEN) shaking
at 4°C for 1.5 h. The samples were centrifuged at 2000 rpm,
4°C for 5 min, and Ni-NTA beads were resuspended in 10 ml
of 1x T-buffer and centrifuged again at 2000 rpm, 4°C for
5 min. The Ni-NTA beads were resuspended in 10 ml of 1x
T-Buffer (containing 30 mM imidazole) and centrifuged again
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at 2000 rpm, 4°C for 5 min. The Ni-NTA beads were then
resuspended in 500 pl of 1x T-Buffer (400 mM imidazole),
and serial fractions of the eluted proteins were collected. Their
concentrations and purity were then measured using a Brad-
ford assay and on SDS-PAGE, respectively. Selected fractions
containing the DnaK protein were dialyzed against a storage
buffer (50 mM Tris-HCI pH 8, 100 mM NaCl, 50% glycerol,
and 3 mM B-mercaptoethanol) and stored at —20°C.

The selected fractions containing the CrsL-His protein with
the highest concentration and the highest purity were pooled
and dialyzed against CrsL dialysis buffer (50 mM Tris—=HCI
pH 8, 100 mM NaCl, 3 mM p-mercaptoethanol, and 5%
glycerol) in Slide-A-Lyzer Dialysis Cassette 2000 MWCO
(Thermo Fisher Scientific). The CrsL-His protein was then fur-
ther purified using the AKTA pure™ chromatography system
(Superdex 75 column). The protein fractions of higher purity
were pooled and dialyzed against a storage buffer (50 mM
Tris—HCI, pH 8, 100 mM NaCl, 50% glycerol, and 3 mM -
mercaptoethanol) and stored at —20°C. The CrsL-His protein
was then used for mice immunization and anti-CrsL antibody
production, as described in the following section.

The purification protocol for the CarD-NT protein was
similar to that described above, with the inclusion of TEV pro-
tease cleavage, as previously described [46, 47].

Animal experiments and immunizations

All animal experiments were approved by the Animal Wel-
fare Committee of the Institute of Molecular Genetics of the
Czech Academy of Sciences, v. v. i., in Prague, Czech Repub-
lic. The handling of animals was performed according to the
Guidelines for the Care and Use of Laboratory Animals, the
Act of the Czech National Assembly, Collection of Laws No.
246/1992. Permission No. 19/2020 was issued by the Animal
Welfare Committee of the Institute of Molecular Genetics of
the Czech Academy of Sciences in Prague.

Five-week old female BALB/cBy] mice (Charles River,
France) were immunized via intraperitoneal injection with
CrsL protein (20 pg in 200 pl) adjuvanted with aluminum
hydroxide (Alum, SevaPharma, Czech Republic). The mice re-
ceived three doses of the protein at 2-week interval. One week
after the third immunization, blood was collected from anes-
thetized animals (i.p. injection of 80 mg/kg ketamine and 8
mg/kg xylazine) using the retroorbital puncture method. The
sera were recovered from the supernatant after centrifugation
of clogged blood at 5000 x g for 10 min at 8°C and stored
at —20°C. The specificity of the antibody was checked using 1
ug of M. smegmatis cell lysate with 1:5000 antibody dilution.

Western blotting and FAR-western blotting

The samples were resolved on SDS-PAGE gels and detected by
western blotting using anti-RNAP {3 subunit antibody [clone
8RB13] (BioLegend) or anti-o’° antibody [clone 2G10] (Bi-
oLegend), anti-CarD antibody, anti-RbpA antibody, anti-CrsL
antibody, anti-GroEL [5177] antibody (Santa Cruz Biotech-
nology), as well as a HRP-labeled anti-mouse IgG antibody
(Sigma—Aldrich). The blots were incubated with SuperSignal
West Pico PLUS Chemiluminescent substrate (Thermo Fisher
Scientific), after which the signals were detected either on film
or using G-box (Syngene) with different exposure times.
FAR-western blotting was performed according to the pre-
viously established protocol [48]. Briefly, the BSA, CarD-NT,
and CrsL-His proteins were loaded in duplicate, resolved on
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SDS-PAGE gels and blotted onto Amersham Protran Nitro-
cellulose Membrane (Sigma-Aldrich). The membranes were
then incubated with decreasing concentrations of guanidine-
HCI (Thermo Fisher Scientific) for protein denaturation and
renaturation. The membranes were blocked with 5% milk and
washed with PBST buffer. The membranes were cut into two
parts. The first part (negative control) was incubated directly
with an anti-CarD antibody. The second part was first incu-
bated with purified CarD protein (20 pg in 10 ml) overnight
to allow CrsL-CarD complex formation. It was then incu-
bated with the anti-CarD antibody. The membranes were then
washed with PBST and incubated with HRP-labeled anti-
mouse secondary antibody (Sigma-Aldrich), after which the
signals were detected.

Native gel electrophoresis

Binding reactions were performed in 8 ul of 1x STB buffer (50
mM Tris—-HCI pH 8.0, 5 mM Mg(C,H30,;),, 100 uM DTT,
50 mM KCIl, and 50 pg/ml BSA) containing iz vitro purified
CrsL, CarD, and DnaK proteins. The proteins were reconsti-
tuted at 37°C 15 min and 8 ul of 2x Loading dye (62.5 mM
Tris-HCI, pH 6.8, 25% glycerol, and 1% Bromophenol Blue)
was added. The samples were then loaded on 8% native gel
[40% acrylamide-Solution 19:1 (AppliChem), 0.375 M Tris—
HCI (pH 8.8), 10% (w/v) ammonium persulfate, TEMED].
Electrophoresis was performed at 4°C, 150 V (15 min pre-
run followed by a 3 h run) using a running buffer (25 mM
Tris and 192 mM glycine). The gels were subsequently stained
with SimplyBlue (Invitrogen) for protein visualization and the
identity of the protein bands confirmed by mass spectrometry.

ChlP-seq

CrsL-FLAG ChIP-seq experiments were performed in paral-
lel with HelD, RbpA, and CarD ChIP-seq [46]. Briefly, 2 mg
of protein cell lysates was incubated with 20 ul of M2 anti-
FLAG resin (Sigma—Aldrich). The captured complexes were
then washed twice with RIPA buffer (150 mM NaCl, 1%
Triton X-100, 0.5% deoxycholate, 0.1% SDS, 50 mM Tris—
HCI pH 8.0, and 0.5 mM EDTA), four times with LiCl buffer
(100 mM Tris-HCI, pH 8.5, 500 mM LiCl, 1% Triton X-
100, and 1% deoxycholate), two times with RIPA, and twice
with TE buffer (10 mM Tris—=HCI, pH 8.0, and 1 mM EDTA).
The protein-DNA complexes were then eluted with an elu-
tion buffer (50 mM Tris-HCI pH 8, 0.66 mM EDTA, and
1% SDS) for 10 min at 65°C, decrosslinked in the presence
of 200 mM NaCl for 5 h at 65°C and treated with 100 pg/ml
RNase A for 1 h at 37°C, and 400 pg/ml proteinase K for
30 min at 45°C. The DNA was then purified with the QIA-
GEN PCR purification kit and eluted with 100 pl of Elution
Buffer. 40 pl of immunoprecipitated DNA sample or 10 ng
of the DNA input were used for library construction, accord-
ing to the NEXTFLEX ChIP-Seq Kit manual, including the
Size-Selection Cleanup step B2. Pooled barcoded libraries (bi-
ological triplicates) were sequenced in single lanes using the II-
lumina NextSeq 500/550 High Output Kit v2 in 75 bp single-
end regime.

RNA-seq

Prior to total RNA extraction, an mRNA spike-in mix com-
posed of four different eukaryotic mRNAs (Plat, Moc, Elav2,
and nLuc) was added [46]. These mRNAs were generated
by in wvitro transcription from pJET plasmids using the

MEGAscript T7 Transcription Kit (Thermo Fisher Scientific).
The amount of RNA spike-in was 10 ng per 30 ml of culture
at ODggo of 0.5. Each frozen cell pellet was resuspended in
240 ul of TE buffer (pH 8.0) plus 60 pl of LETS buffer (50
mM Tris-HCI pH 8.0, 500 mM LiCl, 50 mM EDTA pH 8.0,
and 5% SDS), and 600 pl acidic (pH~3) phenol/chloroform
(1:1). The samples were sonicated in a fume hood, centrifuged
and the aqueous phase was extracted two more times with
acidic phenol/chloroform and precipitated with ethanol. The
RNA was dissolved in double-distilled water and treated with
DNase (TURBO DNA-free Kit, Invitrogen). 1 ug of DNase-
treated RNA was ribodepleted with a riboPOOL Kit Pan-
Actinobacteria (siTOOLs). Sample integrity was checked us-
ing an Agilent 2100 Bioanalyzer Pico Chip. The ribodepleted
RNA sample (20-100 ng) was used for library construction
according to the NEXTFLEX Rapid Directional RNA-Seq
Kit. The libraries were checked using an Agilent 2100 Bio-
analyzer Nano Chip. The pooled barcoded libraries were se-
quenced in a single lane with Illumina NextSeq 500/550 High
Output Kit v2 in 75 bp single-end regime at the Institute of
Molecular Genetics AS CR, Prague, Czech Republic.

RT-gPCR

5 ul of RNA (~ 2.5 ug) was reverse transcribed into cDNA
(20 wl reaction, SuperScriptlll, Invitrogen) using random hex-
amers and amplified by RT-qPCR in a LightCycler 480 Sys-
tem (Roche Applied Science) in duplicate reactions containing
LightCycler 480 SYBR Green I Master and 0.5 pM primers
(each). Gene-specific primers were designed with Primer3, the
sequences are listed in the Supplementary Data.

Negative controls (no-template reactions and reactions
with RNA as the template to check for genomic DNA con-
tamination) were included in each experiment. The quality of
the PCR products was determined by dissociation curve anal-
ysis, and primer efficiency was determined by standard curves.
Relative mRNA levels were quantified based on threshold cy-
cles (Ct) for each PCR, normalized to the Plat mRNA spike-in
value using the formula 2/ (CtsPike) — CtimRNAN Relative ex-
pression (E) was then normalized to the control strain (E =

Edepleted /Econtro] )

Glycerol gradient ultracentrifugation

M. smegmatis exponential and stationary phase cells were pel-
leted, resuspended in 20 mM Tris-HCI, pH 8, 150 mM KCl,
1 mM MgCl,, 1 mM DTT, 0.5 mM PMSF and a Calbiochem
Protease Inhibitor Cocktail Set III protease inhibitors, and
then sonicated 15 x 10 s with 1 min pauses on ice before
being centrifuged. Protein extracts (1 mg) were loaded on a
linear 10-30% glycerol gradient, which was prepared in gra-
dient buffer (20 mM Tris-HCI, pH 8,150 mM KCl,and 1 mM
MgCl,), and fractionated by centrifugation at 130 000 x g for
17 h using an SW-41 rotor (Beckman). The gradient was di-
vided into 20 fractions, and the proteins in each fraction were
resolved on SDS-PAGE gels and detected by western blotting.

ITC measurements

Isothermal titration calorimetry (ITC) experiments were car-
ried out using a MicroCal Auto-iTC200 calorimeter (Malvern
Panalytical) at 27°C with stirring at 750 rpm. Both CarD
and CrsL were both transferred into identical buffers (50 mM
Tris—=HCI, 100 mM NacCl, and 0.5 mM DTT, pH 7.5) for the
titration purposes. The cell contained 27.6 uM CarD, which



was titrated by 315 uM CrsL. Measurements were performed
in triplicate, including blank reactions to account for the heat
of dilution (buffer:CrsL and CarD: buffer). The titration con-
sisted of 30 injections per measurement, with an initial delay
of 120 s. The injection volume was set at 1.3 ul, with 240 s
spacing between each step. The raw data were deposited in the
Molecular Biophysics Database (MBDB) under entry number
92738-h4q29 and in Zenodo.

The analysis was performed by Microcal PEAQ-ITC Anal-
ysis software. The blank measurements were subtracted from
the raw data by MEAN subtraction method. The binding
isotherms were fitted to the one-site binding model.

Preparation of isotope-labeled proteins for NMR
measurements

[N]-CrsL, [BC,PN]-CrsL, and [¥C,'’N]-CarD were ex-
pressed in 2 L of minimal media (M9) containing 1 M MgSQOy,
500 mM CaCl,, 100 mM MnCl,, 50 mM ZnSOy4, and 50 mM
FeCl; [49] and supplemented with "NH4Cl and [3Cg]- or
unlabeled glucose. The cultures were incubated at 37°C and
shaken at 120 rpm for ~ 3 h (until ODgg reached ~0.6);
expression was induced with 0.4 mM IPTG. The tempera-
ture was then lowered to room temperature (~20°C) and
the cultures were shaken for an additional 3 h. The proteins
were then purified as described above, with an additional size-
exclusion chromatography step on a 16/60 Superdex 30 pg
(CrsL) or Superdex 75 pg (CarD) column in GF buffer (50mM
Tris—=HCI, 300 mM NaCl, 1 mM DTT, and 1 mM NaN3;, pH
7.5). The samples were dialyzed against the NMR buffer: 20
mM sodium phosphate buffer, pH 7, 0.5 mM TCEP and 1
mM NaNj, containing either 10 mM NaCl (low salt) or 300
mM NaCl (high salt). The purified CrsL and CarD were then
concentrated using a Vivaspin® 15R Centrifugal Concentra-
tor (Sartorius) with 2000 MWCO and 10000 MWCO, re-
spectively.

NMR measurements

All experiments were performed using Bruker Avance III HD
950 MHz and 850 MHz NMR spectrometers equipped with
a TCI cryogenic probe head with z-axis gradients. The tem-
perature was set to 27°C for the measurements and cali-
brated according to the chemical shift differences of the pure
methanol peaks. All samples contained 10% deuterium diox-
ide (D,0). '"H-N correlation was observed in 2D 'H-N
heteronuclear single-quantum coherence (HSQC) spectra [50,
51]. For backbone resonance assignment, the following sam-
ples and the standard set of 3D triple-resonance experiments
were used: 0.2 mM [3C,SN]-CrsL in low-salt NMR buffer,
0.4 mM [BC,°N]-CrsL with 0.8 mM unlabeled CarD in
high-salt NMR buffer, 0.5 mM ["3C,'*N]-CarD in high-salt
NMR buffer, 0.5 mM ["*C,"SN]-CarD with 1 mM unlabeled
CrsL in high-salt NMR buffer samples consisting of HNCA
[52], HN(CO)CA [53], HNCACB [54], and CBCA(CO)NH
[55]. In addition, a "N-edited 3D NOESY spectrum [56]
was recorded for 0.4 mM [P C,°N]-CrsL with 0.8 mM un-
labeled CarD. The carbonyl '3C chemical shifts for secondary
structure propensity (SSP) assessment were obtained from an
HNCO spectrum [52] of free ['*C,’N]-CrsL. A 2D 'H-N
TROSY spectrum [57] was acquired with 256 scans for 1 mM
free ['*C,"*N]-CarD. Titration experiments were conducted in
a high-salt NMR buffer by mixing samples of 0.2 mM [}*N]-
CrsL and 0.2 mM ["*N]-CrsL with 0.4 mM unlabeled CarD

CrsL binds CarD and regulates transcription 5

to fully saturate CrsL. 2D ['H,">N] HSQC spectra of 2 mM
[®N]-CrsL with 0, 25, 50, 75, 100, 125, 150, 175, 200, 300,
and 400 uM CarD were recorded in the titration series. These
spectra and their acquisition parameters were deposited in
the BioMagResBank (BMRB) under the following entry num-
bers: 52735 (free CrsL), 53355 (labeled CrsL-CarD complex),
53356 (free CarD), and 53357 (CrsL-CarD labeled complex).

The spectra were processed using the NMRPipe software
[58] and the subsequent assignment of the peaks was done us-
ing Sparky 3.115 software (T. D. Goddard and D. G. Kneller,
University of California). Values of SSP were calculated us-
ing the SSP (1.0) script and the chemical shifts of the as-
signed backbone residues [59]. As a point of reference, we
used the predicted chemical shifts of the random coil form
of our protein calculated from the sequence using the Poulsen
IDP/IUP random coil chemical shifts script [60-62]. Neighbor-
corrected structural propensity (ncSP) values were computed
using the ncSP calculator [63] with chemical shifts based on
those of Tamiola, Acar, and Mulder [64]. Values correspond-
ing to the AlphaFold2-predicted structure were calculated us-
ing the SHIFTX2 web tool [65].

In silico predictions

Multiple sequence alignments were constructed based on hits
from PHI-BLAST queries and results from DeepMSA (2.0)
[66, 67]. We curated putative homologs based on similar-
ity and compared them with the KEGG Sequence Similarity
DataBase [68]. The final multiple sequence alignment was pre-
pared using ClustalW in the UGENE toolkit and plotted in
ESPript (3.0) [69, 70]. The sequence logo was created using
WebLogo (3.7.12) software [71]. Disorder prediction was per-
formed using PSIPRED 4.0, NetSurfP 3.0, [UPred2A, ESpritz
1.3, and fIDPnn predictors [72-76]. For IUPred2A, we chose
the IUPred2 short disorder option. For predictions using ES-
pritz, we selected the NMR prediction type and Best Sw as the
decision threshold option. The structural prediction of CrsL
from M. smegmatis and its heterodimer predictions with CarD
or RNAP were computed using AlphaFold2 and AlphaFold
Multimer extensions [77, 78].

NGS data processing and analysis
ChIP-seq

The ChIP-seq peak-calling and gene-assignment procedures
were performed as previously described [44]. Briefly, the reads
were mapped to the M. smegmatis genome (NCBI RefSeq
NC_008596.1) using HISAT2 [79], and peaks were called
by MACS2 [80]. Venn diagrams showing the overlap of
peaks were created using the BEDTools intersect [81] and
matplotlib-venn package (https:/pypi.org/project/matplotlib-
venn/). The three-way Venn diagram was created with Inter-
vene [82]. Coverage profiles of the 1 kb region around the
ORF start were generated using the deepTools [83] (com-
puteMatrix, plotProfile), with programming libraries rtrack-
layer [84], Pandas (https://pandas.pydata.org/), Matplotlib
[85], and Seaborn [86].

RNA-seq

The read quality was checked using version 0.11.9 of
FastQC (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/). Where necessary, adapters and low-quality
sequences were removed using Trimmomatic 0.39 [87].
The reads were then aligned to the reference genome using
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Figure 1 (A) Co-immunoprecipitated proteins from CarD-FLAG* (1 ng/ml
ATc) and CrsL-FLAG** (10 ng/ml ATc) strains, collected at both exponential
and stationary phases, as well as from the CarD-gFLAG strain
(exponential phase only), were resolved on SDS-PAGE and visualized by
silver staining. The identity of the protein bands was confirmed by
MALDI-FTICR mass spectrometry. Note that the presence of a FLAG tag
slows down the migration of the tagged protein compared to the
nontagged protein. (B) Western blot of total cell lysates from wt (WT) and
Crsl-FLAG** (25 ng/ml ATc) in the exponential and stationary phases.
CrsL levels were detected by anti-CrsL antibody. GroEL was used as
loading control and detected with an anti-GroEL antibody. (C) The
immunoprecipitated proteins from the CarD-FLAG* and CrsL-FLAG**
strains were detected by western blotting with anti-RNAP (3) and
anti-CarD antibodies. Asterisks indicate the different ATc concentrations
(ng/ml) used in the inducible FLAG-tagged strains.

HISAT2 2.2.1 [88] and SAMtools 1.13 [89, 90]. Read cov-
erage tracks were computed using deepTools 3.5.1 [83]. The
DESeq2 R package [91] was used to identify differentially
expressed genes (DEGs) at FDR < 0.05.

Results

CrsL binds to CarD in M. smegmatis

Our search for CarD interacting partners began with an M.
smegmatis strain containing an additional copy of FLAG-
tagged CarD under an ATc-inducible promoter [92]. Immuno-
precipitation of CarD-FLAG from cells in the exponential
and stationary phases revealed its association with RNAP
subunits, o*, RbpA and, notably, a protein encoded by the
MSMEG_5890 gene (Fig. 1A, lane 2). MSMEG_5890 encodes
a small protein (predicted MW 5.7 kDa), which we named
“CrsL” (CarD RNA polymerase small linker). The function
of CrsL is unknown.

To confirm the CarD-CrsL interaction, we generated a
strain in which the FLAG-tag sequence was inserted into
the M. smegmatis genome at the carD locus (CarD-gFLAG).
CarD-gFLAG immunoprecipitation confirmed the interac-
tion of CarD with CrsL and other known CarD interaction
partners: o® and WhiA [11, 93-96] (Fig. 1A, lane 4, and
Supplementary Fig. S1A, lane 3). We also observed an associa-
tion between CarD—-gFLAG and ApeB (MSMEG_5828), a pu-
tative protease homologous of M. tuberculosis PepC [97, 98],
in stationary phase (Supplementary Fig. S1A, lane 3). How-
ever, while CarD level decreased in the wild-type (wt) strain
during stationary phase, CarD-gFLAG levels remained high,
although CarD—gFLAG is expressed from its endogenous pro-
moter (Supplementary Fig. S1B, lanes 11 and 12). The an-
tisense RNA of carD (AscarD RNA) was recently shown
to be expressed in stationary phase and to negatively regu-
late CarD expression [38]. In the CarD-gFLAG constructed
strain, adding the sequence that encodes the FLAG-tag and
the hygromycin resistance cassette to the carD genome locus
(Supplementary Fig. S1C) disrupted the expression of AscarD
RNA. This resulted in an increased level of the CarD protein.
Although we confirmed that ApeB interacts with elevated lev-
els of CarD in the stationary phase (Supplementary Fig. S1D),
we were not able to reciprocally confirm the CarD-ApeB
interaction using the endogenous FLAG-tagged ApeB un-
der normal conditions (Supplementary Fig. STA, lane 2, and
Supplementary Fig. S1E). Therefore, ApeB binds to CarD only
when its level is increased, and the level of CarD can affect its
interacting proteins.

Unlike ApeB, CrsL interacted with CarD not only when
the CarD levels were elevated (Fig. 1A and Supplementary
Fig. STA) but also when CarD-FLAG levels were optimized
to be comparable to the endogenous CarD levels in the wt
strain (Fig. 1A, lanes 2 and 6, and Supplementary Fig. S1B,
lanes 15 and 16). Under these conditions, CrsL peptides were
highly abundant in CarD-FLAG immunoprecipitates in both
the exponential and stationary phases, as detected by mass
spectrometry (Supplementary Table S1).

To confirm the interaction between CrsL and CarD, we con-
structed a strain with FLAG-tagged CrsL under an ATc in-
ducible promoter [92]. We generated our own mouse anti-
CrsL antibody and verified the CrsL-FLAG expression. Even
at an induction level of 25 ng/ml ATc (indicated by ***),
CrsL-FLAG levels were comparable to those of the endoge-
nous CrsL protein in the wt strain (Fig. 1B, lane 1 versus 2,
Supplementary Fig. S1F). CrsL-FLAG** immunoprecipitated
CarD from cells in both exponential and stationary phases, as
detected by mass spectrometry (Fig. 1A, lanes 3 and 7), and by
western blotting with the anti-CarD antibody (Fig. 1C). Addi-
tionally, RNAP B, B’ and « subunits co-immunoprecipitated
with CrsL-FLAG** in exponential but not stationary phase
(Fig. 1A, lanes 3 and 7 and Fig. 1C, lanes 3 and 6). In both
growth phases, CrsL interacted with the DnaK chaperon pro-
tein (MSMEG_0709) (Fig. 1A, lanes 3 and 7).

In conclusion, we have identified a novel small protein that
we have named CrsL. CrsL binds to the essential mycobac-
terial transcription factor CarD in both the exponential and
stationary phases.

CrsL is evolutionarily conserved in actinobacteria

To further characterize CrsL, we explored the evolutionary
relationship between its homologs across diverse bacterial
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species. We conducted a multiple sequence alignment of se-
lected CrsL homologs, identifying the 20-45 aa residue re-
gion as the most conserved part of CrsL (Fig. 2A and B,
and Supplementary Table S2). CrsL is conserved in many
actinobacterial species, including Mycobacteria, Nocardia,
Streptomyces, Corynebacteria, and Rhodococcus (Fig. 2A and
Supplementary Table S3). CrsL homologs are found in species
such as M. tuberculosis (Rv3489), M. bovis (Mb3519), and M.
marinum (MMAR_4977), where they are annotated as hypo-
thetical proteins with an unknown function [99, 100].

CrsL is an intrinsically disordered protein

To probe the secondary structures of CrsL and obtain in-
sights into its potential three-dimensional arrangement, we
first used protein structure predictions. Combined results from
several prediction tools, namely PsipreD [72], NetSurfP3 [73],
[UPred2A [74], ESpritz [75], and fIDPnn [76], showed low
values for secondary structures. Three of these tools (Net-
SurfP3, fIDPnn, and IUPred2A) consistently assigned ambigu-
ous values to most residues. On the contrary, PsipreD and
ESpritz predicted two conserved regions of CrsL (aa 20-
27 and 34-48) to be well-ordered (Fig. 2C). Similarly, Al-
phaFold2 [77] predicted these two regions to be structured
(Supplementary Fig. S2A). This suggests the formation of or-
dered structures in complexes with interacting partner(s).

Next, we purified CrsL labeled with '3C and N isotopes,
measured its NMR spectra, and performed backbone assign-
ment. We successfully identified all of the peaks correspond-
ing to the atoms forming the CrsL backbone. The 2D '"H-SN
HSQC spectra were used to monitor the individual amide-
proton signals of the protein (Fig. 2D). Based on the spec-
trum obtained, the proton resonances exhibit a narrow dis-
tribution typical of many intrinsically disordered proteins,
including residues forming the two regions predicted to be
structured (Fig. 2C). Furthermore, we computed the ncSP and
SSPs to obtain more detailed structural information. The low
ncSP/SSP values (Fig. 2E and Supplementary Fig. S2B) indi-
cate that free CrsL is an intrinsically disordered protein (IDP)
with a propensity of 20-40% to form «-helical structures in
the Asp19-Arg25 and Glu37-Met44 regions. IDPs are mostly
characterized in eukaryotes, where they often serve as scaf-
folds for multiprotein interactions. Nevertheless, intrinsically
disordered protein domains are also involved in interactions
affecting bacterial transcription [101, 102].

CrsL binds directly and tightly to CarD

To determine whether the CrsL-CarD interaction is direct
or mediated by another protein, we performed FAR-western
blotting [48] using in vitro purified CarD and CrsL proteins.
With the anti-CarD antibody, we detected CarD associated
with the nitrocellulose membrane-bound CrsL (Fig. 3A, lane
6), indicating that CrsL binds directly to CarD.

To further characterize the CarD-CrsL complex, we per-
formed native gel electrophoresis to monitor the formation of
the complex using iz vitro purified CrsL and CarD proteins
(Fig. 3B). CarD alone migrated as a dimer; however, upon the
addition of CrsL, the CarD dimer dissociated and CarD bound
to CrsL. We then determined the dissociation constant (Ky) of
the CarD—CrsL complex using isothermal titration calorime-
try (ITC, Supplementary Fig. S2C). In three independent mea-
surements, the Kyvalues were in the nanomolar range (4.3,
4.5, and 3.3 nM, respectively). A Kjof ~4 nM indicates a
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strong interaction. This interaction is enthalpy-driven (AH =
—21 kcal/mol), associated with a large entropic cost (—TAS
= 9 kcal/mol). The results indicate a binding stoichiometry of
one CrsL molecule to one CarD subunit.

While nearly all CrsL and CarD were associated, only a mi-
nor fraction of DnaK interacted with 62.5 nM CrsL in vitro
(Fig. 3C), suggesting that the CrsL-DnaK interaction is con-
siderably weaker. This is consistent with the observation that
DnaK, which also binds CrsL in vivo, did not inhibit the CrsL-
CarD association (Fig. 3C, lane 7). We confirmed that CrsL
directly binds to both CarD and DnaK. However, the CrsL-
CarD interaction is significantly stronger.

CrsL is folded upon CarD binding

To gain structural insight into the interaction, we recorded 2D
TH-BN HSQC spectra of ['*N]-CrsL with increasing concen-
tration of CarD (selected peaks in detail in Supplementary Fig.
S3). The peaks of ["*N]-CrsL bound to CarD exhibited large
chemical shift dispersion, which is typical of well-ordered
proteins (Fig. 4A). The positions of free or bound [’N]-
CrsL peaks did not change during titration, as expected for a
nanomolar Ky, indicating slow binding. However, the peaks of
the complex with chemical shifts influenced by the CarD bind-
ing were very broad, indicating conformational and/or chemi-
cal exchange influences between the bound and free form. The
exchange broadening was significantly suppressed by increas-
ing the NaCl concentration to 300 mM, revealing stabiliza-
tion of the complex by enhancing hydrophobic interactions
(Supplementary Fig. S4A).

The suppressed broadening allowed us to assign the ma-
jority of peaks using triple resonance and Y N-edited NOESY
spectra recorded on [3C,°N]-CrsL with an excess of unla-
beled CarD. The peaks of Thr5-Ala17 and Thr52-Val54 were
sharp, showing that the terminal regions remained disordered
in the complex. However, the peaks of most residues were
broad in the "H-"SN HSQC spectra and invisible in HNCACB
and CBCA(CO)NH spectra, making the assignment difficult
especially for the Thr33-Leu45 residues. The spectral features
described suggest that CrsL in complex with CarD is mostly
folded, yet exhibiting considerable exchange dynamics.

The changes observed in the ['*C,'N]-CarD spectra upon
CrsL binding (Fig. 4B and Supplementary Fig. S4B) are consis-
tent with those described above. Whereas peaks from the N-
terminal RNA interaction domain (RID) were only observed
(and assigned using triple-resonance NMR experiments) in
2D "H-N HSQC or TROSY spectra of free ['3C,'°N]-CarD,
additional peaks appeared upon the addition of unlabeled
CrsL, with intensities comparable to peaks of ["SN]-CrsL
residues in the complex with unlabeled CarD. The reduced
peak broadening of ['3C,""N]-CarD in the presence of CrsL
clearly shows that binding to CrsL substantially alters the
structure of CarD, which is also consistent with the results of
native gel electrophoresis indicating dissociation of the CarD
dimer upon CrsL binding. The chemical shifts assigned to free
and bound CarD are identical for residues lle3-Thr46 in the
RID and Gly58-Arg60 in the linker between the RID and the
CTD (Fig. 4C), but differ for residues Asp61-Gly67 in the
linker region. This suggests that the RID adopts a rigid struc-
ture that is identical in the free dimeric and CrsL-bound forms
of CarD, and that the linker region is involved in CarD bind-
ing. The number of peaks observable only in complex with
CrsL indicates that they belong mostly to residues of CTD, but
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Figure 2. (A) Multiple sequence alignment of selected CrsL homologs in actinobacteria. Conserved regions and the secondary structure elements are
depicted above the alignment. The protein names are listed in Supplementary Table S2. (B) Multiple Sequence Alignment of the CrsL sequence by
DeepMSA2 showing the highly conserved region (20-45 residues) within 770 entries of homologous bacterial sequences. (C) Disorder sequence-based
prediction of CrsL using different web tools. Tools’ names are indicated below the figure. Values above 0.4 are considered as intrinsically disordered
regions. The CrsL protein does not have an ordered structure with exceptions of the PsipreD and ESpritz predictions. (D) The 2D "H-""N HSQC
spectrum of CrsL. The proton resonances have a narrow distribution pointing toward a disordered state of the protein. (E) ncSP of CrsL calculated from
the chemical shifts of the protein backbone. Relatively low values point to a disordered state with a slight propensity toward two o-helical regions.
Cysteine residues (as Cys38 in CrsL) are not computed by the ncSP default settings.
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ratios indicated below the gel and separated on 8% PAGE. The gels were stained with Coomassie, and the identity of the protein bands was confirmed
by mass spectrometry. In (C), DnaK protein was additionally added to the mixture in the ratios indicated below the gel followed by a similar experiment

as described in B.

the intensity of the corresponding peaks in triple-resonance
experiments is insufficient for a reliable assignment.

The structure of the CrsL-CarD complex predicted by Al-
phaFold Multimer [77, 78] is in a good agreement with the
NMR data (Fig. 4D and Supplementary Fig. S5). The CrsL
residues Alal7-Leu45 are folded in a helix-turn-helix mo-
tif, with the turn formed by Ala32-Asp34. The SSP, cal-
culated from 3C chemical shifts available for most CrsL
residues, shows the formation of «-helices between Thr20
and Ile47, interrupted in the same region as predicted by Al-
phaFold Multimer (Fig. 4E and Supplementary Fig. S2B). In
the predicted complex structure, CrsL binds to the pocket be-
tween C-terminal (CTD) and N-terminal (RID) domains of
CarD (Fig. 4D and Supplementary Fig. S5). The predicted
binding site includes the highly conserved loop V56-V62
(Supplementary Fig. S6) and overlaps with the interaction sur-
face of CarD in its complex with RNAP [103]. This suggests
that CrsL interferes with the CarD-RNAP interaction. On
the other hand, the predicted binding site is far from the C-
terminal motif of CarD recognized by the Clp protease [104].

In conclusion, NMR data and AlphaFold Multimer predic-
tions provide evidence that CrsL forms a well-ordered helix-
turn-helix motif upon binding to CarD, causes dissociation
of the CarD dimer, and most likely interferes with the CarD-
RNAP interaction.

The majority of CrsL co-sediments with CarD

In the exponential phase, CrsL and RNAP were co-
immunoprecipitated with CarD-FLAG (Fig. 1A). Recipro-
cally, CarD and RNAP were co-immunoprecipitated with
CrsL-FLAG (Fig. 1C). To determine whether CrsL primarily
associates with CarD or RNAP, we performed glycerol gradi-
ent ultracentrifugation using exponential and stationary phase
M. smegmatis lysates. The gradient was then fractionated and
the distributions of CrsL, RNAP, o, CarD, and RbpA were
analyzed by western blotting.

In exponential phase, CrsL mainly sedimented in the top
fractions (1-5) where CarD was also predominantly found
(Supplementary Fig. S7A). Fractions 4 and 5 contained RNAP,
but the majority of CrsL co-sedimented with CarD in fractions
1-3. Only a subset of CrsL molecules co-sedimented with both
CarD and RNAP in fractions 4 and 3, indicating that the ma-
jority of CrsL is not bound to RNAP.

In stationary phase, CrsL was not detected in the top frac-
tions where most of the CarD sedimented. CrsL sedimented
in the bottom fraction together with a minor amount of CarD
(fraction 20) (Supplementary Fig. S7A). Although M. tuber-
culosis RNAP can oligomerize in vitro to form supramolec-
ular complexes [105] and RNAP was partially detected in
the bottom fraction of the gradient (Supplementary Fig. S7A),
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RNAP was not co-immunoprecipitated with CrsL-FLAG in
the stationary phase (Fig. 1A, lane 7). This suggests that CrsL
likely participates in other complexes that do not include
RNAP, possibly involving the DnaK chaperone, a major CrsL-
interacting protein (along with CarD), in the stationary phase
(Fig. 1A, lane 7).

CrsL level is decreased in stationary phase and is
dependent on CarD

CrsL predominantly binds to CarD and changes conformation
upon CarD binding. We, therefore, asked whether CarD might
affect CrsL stability in vivo and if CrsL levels correlate with
CarD expression.

Both CarD and CrsL protein levels decreased in the station-
ary phase (Fig. 1B and Supplementary Figs S1B and 7B). CrsL
levels increased when CarD was artificially elevated in the
CarD—gFLAG strain during stationary phase (Supplementary
Fig. S7B, lane 8). To further confirm that the level of the
CarD protein alters the level of the CrsL protein, we generated
strains containing an ATc-inducible CRISPR system [106] to
knockdown CarD, which is an essential protein [33]. Upon
the addition of ATc, the mRNA and protein levels of the carD
gene were efficiently depleted (~90% depletion) in both the
exponential and stationary phases (Supplementary Fig. S7C
and D). CrsL protein levels were reduced upon CarD depletion
(Supplementary Fig. S7D and E), indicating that the amount
of CrsL depends on CarD.

Consistent with this, CrsL. was more abundant in
CarD-FLAG co-immunoprecipitations during the exponen-
tial phase, when the level of CarD increases, than during the
stationary phase (Fig. 1A, lane 2 versus lane 6). Similarly, ele-
vating CarD levels in the CarD—gFLAG strain during the sta-
tionary phase increased the amount of CrsL detected in CarD-
FLAG co-immunoprecipitations (Supplementary Fig. S7F, lane
6 versus lane 8), consistent with a positive correlation between
CarD and CrsL protein levels.

In contrast, the knockdown of the crsL gene did not af-
fect the level of CarD (Supplementary Figs S7D and 6E).
However, we note that although csrL mRNA was efficiently
depleted (>90%), at the protein level, CrsL was depleted
by 70% and 50% in the exponential and stationary phases
(Supplementary Fig. S7E). Taken together, the CarD level af-
fects the CrsL protein level, and the formation of the CarD-
CrsL complex is mainly regulated by the levels of the interact-
ing proteins during cell growth.

CrsL is a potential mycobacterial transcription
factor

As CrsL was found in a complex with RNAP and CarD during
the exponential phase (Fig. 1A), we used chromatin immuno-
precipitation sequencing (ChIP-seq) with CrsL-FLAG to de-
termine if CrsL is associated with the bacterial chromosome.
Additionally, we compared the genomic binding sites of CrsL
with those of CarD, RbpA, RNAP, and o*/c® [44, 46] un-
der the same experimental conditions. All ChIP-seq data and
detected peaks are available on the msmegseq.elixir-czech.cz
webpage, which has an integrated IGV genome browser [107].

The results showed that CrsL is indeed associated with the
genome. We detected comparable numbers of CrsL peaks in
the M. smegmatis genome relative to CarD peaks (315 versus
406, Fig. SA and Supplementary Table S4). CrsL and CarD
peaks were highly enriched at the 5’ ends of genes, regions that
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correspond to gene promoters. An example of representative
ChIP-seq data is shown in Fig. 5B.

Around 75% of the significant peaks (—logio g-value > 40)
detected for CrsL overlapped with CarD peaks (Fig. 5C). Es-
pecially promoter regions with high CarD occupancy were al-
most always associated with CrsL (Fig. 5D). Likewise, pro-
moter regions with high CrsL occupancy were associated with
CarD (Fig. 5E). This positive correlation between CrsL and
CarD suggests that promoters interacting with CarD are more
likely to also be associated with CrsL, and vice versa. Never-
theless, both CrsL and CarD can also interact with promoters
in the absence of each other (Fig. 5C, blue versus red colors).

In the ChIP-seq data, only 79 of CrsL-associated genomic
loci were not bound by CarD (Fig. 5C). However, we noticed
that 56 of the 79 CrsL peaks overlap with low-significant
CarD peaks (—logig g-value < 40) that were originally ex-
cluded from the analysis. The remaining subset of 23 CrsL
peaks does not overlap with any detectable CarD peaks
but exclusively overlaps with 04/0® peaks (no RNAP, CarD,
and RbpA peaks). Two examples are the promoters of the
genes MSMEG_1821 (encoding acyl-CoA dehydrogenase) or
MSMEG_5136 (annotated as helix-turn-helix motif protein)
(Supplementary Fig. S8A).

The majority of CrsL-bound genomic loci were also associ-
ated with 0#/0®, RbpA, and RNAP (Fig. SF-H, respectively).
Moreover, promoters associated with CrsL displayed higher
coverage of 0*/0®, RbpA, and RNAP peaks than promoters
without CrsL (Fig. SI-K, respectively). Interestingly, across the
entire M. smegmatis genome, we identified only 11 CrsL peaks
that did not overlap with o*/c® (Fig. SF). This suggests that
CrsL predominantly associates with the promoter regions of
o4/oB-dependent genes (Fig. ST).

The CrsL peaks, similar to CarD peaks, were detected at
the promoters of genes involved in transcription regulation,
including the carD, rpoB, and sigA genes (Fig. 6A). CrsL also
binds to its own promoter (Fig. 6A) and rRNA promoters
(Supplementary Fig. S8B). It also binds to tRNA genes and
ribosomal protein-coding genes (Supplementary Table S4).
Based on Gene Ontology Term analysis [108], many CrsL-
bound genes are involved in protein biosynthesis, amino-acid
biosynthesis, and tricarboxylic acid cycle biological processes.
We generated average ChIP-seq profiles of CrsL and CarD for
200 highly expressed genes as well as for 200 genes with low
to no expression in the exponential phase [41] (Fig. 6B and C,
respectively; for the expression profiles of the two gene groups
see Supplementary Fig. S8C). CrsL was associated with highly
expressed genes and was notably absent from nontranscribed
or lowly expressed genes, as was CarD (Fig. 6B and C). Glob-
ally, CrsL interacted with the promoters of actively transcribed
genes similarly to CarD, RNAP, or ¢*/c® (Fig. 6D) and the
majority of CrsL-associated promoters interacted also with
CarD, RNAP, RbpA, and ¢*/0® (Fig. 6E and F).

We have identified the binding motif for CrsL in the DNA
which resembles a promoter (Supplementary Fig. S9A and B).
These data suggest that CrsL is a transcription factor that gen-
erally binds to the promoters of highly expressed genes in M.
smegmatis.

Identification of CrsL- and CarD-regulated genes in
M. smegmatis

To determine the effects of crsL depletion on the M. smegmatis
transcriptome, we performed RNA-seq using the crsL knock-
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down strain in both the exponential and stationary phases. In
parallel, we performed RNA-seq with the carD knockdown
strain to compare the DEGs regulated by both CrsL and CarD.

After CrsL depletion in exponential phase, relatively few
genes were affected (|Logy FC| > 0.5, FDR-corrected p-value
< 0.05). 90 genes significantly increased expression, while 43
genes decreased expression (Fig. 7A). In the stationary phase,
320 genes significantly increased expression while 141 genes
decreased expression (Fig. 7B). In either phase, CrsL depletion
did not affect the carD mRNA level. The relatively small num-
ber of affected genes could be due to the less efficient depletion
of the CrsL protein. The DEGs likely represent the tip of the
iceberg, the genes requiring CrsL the most for their regulation.

On the contrary, nearly one-third of the genes in the genome
changed expression after CarD depletion: 1169 genes signif-
icantly increased expression while 1124 genes decreased ex-
pression in the exponential phase (Fig. 7C and Supplementary
Table S5). In stationary phase, 1414 genes significantly in-
creased expression while 1474 genes, including crsL, de-
creased expression (Fig. 7D). Interestingly, the most affected
gene in the stationary phase was Ms1, a binding partner of
the RNAP core [40, 41]. The effects of CarD and CrsL deple-
tions in the stationary phase were unexpected, as their protein
levels are already highly reduced compared to the exponential
phase (Fig. 1B and Supplementary Fig. S1B).

When we compared the genes regulated by CrsL and CarD,
64 genes were affected by both CrsL and CarD depletion in
the exponential phase (~50% of the crsL DEGs) (Fig. 7E). In
the stationary phase, 308 genes were affected by both CrsL
and CarD depletion (~66% of the crs. DEGs) (Fig. 7E).

Most of the DEGs are indirectly regulated by CrsL and
CarD in the exponential phase. ChIP-seq detected CrsL asso-
ciation with 24 out of the 133 genes that changed expression
upon CrsL depletion (Fig. 7F and Supplementary Table S6).
A similar scenario was observed for CarD - 288 genes (out
of 2293 genes that changed expression upon CarD depletion)
were associated with CarD (Fig. 7G and Supplementary Table
S6). Additionally, many promoters were occupied by CrsL or
CarD, but the expression of the genes under these promoters
was not altered by CrsL or CarD depletion, respectively (Fig.
7F and G).

CrsL affects gene expression in both the exponential and
stationary phases, with a greater number of genes altered dur-
ing the stationary phase. For the majority of genes directly
regulated by CrsL (21 out of 24), CrsL acts as a repressor.

CrsL alters CarD association with RNA polymerase
in vivo

RNA-seq analysis of the crsL-depleted strain indicates that
CrsL functions more frequently as a repressor. At the same
time, CrsL binds to the promoters of highly expressed, CarD-
associated genes. CrsL interacts strongly with CarD, and only
a small fraction of CrsL is associated with RNAP. AlphaFold
Multimer predictions further suggest that CrsL influences
CarD binding to RNAP (Supplementary Fig. S9C and D),
consistent with our NMR measurements showing that CrsL
binds near the CarD domain interacting with RNAP (Fig. 4).
Together, these findings suggest a role for CrsL in regulat-
ing CarD-RNAP association. To test this, we utilized a crsL
knockdown strain introduced into a background expressing
endogenously FLAG-tagged B’ subunit of RNAP and mea-
sured the amount of CarD bound to RNAP after the CrsL

depletion. We did not detect any considerable changes during
the exponential phase; however, the amount of CarD bound
to RNAP increased after c¢rsL knockdown in the stationary
phase (Fig. 8A). Therefore, CrsL negatively affects the CarD-
RNAP interaction in the stationary phase, which is consistent
with the markedly higher number of DEGs following CrsL
depletion during this growth phase (Fig. 7B). As CarD levels
decrease in the stationary phase, CrsL may have a greater im-
pact on CarD association with RNAP and thereby negatively
regulate gene expression.

To further assess the role of CrsL in stationary phase,
we compared the growth curves of CrsL-depleted cells (crsL
knockdown) to those of the control strain (zcWT) at 37°C.
The crsL knockdown strain showed a modest but repro-
ducible increase in optical density during the stationary phase
compared to the control strain (Fig. 8B). These results suggest
that CrsL contributes to the bacterial response to nutrient-
limiting conditions during the stationary phase.

CrsL affects M. smegmatis growth at elevated
temperature

Our data showed that CrsL directly regulates the expression of
the MSMEG_5773 (encoding DesA, fatty acid desaturase) and
MSMEG_1930 genes (encoding DEAD/DEAH box RNA he-
licase). The DesA enzyme introduces double bonds into fatty
acid chains, producing unsaturated fatty acids. This process
is crucial for enhancing membrane fluidity at low tempera-
ture [109-114]. The DEAD/DEAH RNA box helicase remod-
els the RNA secondary structures formed during cold stress
[115-119]. CrsL acts as a repressor for these genes. It asso-
ciates with their promoters, and the expression of both genes
increased following CrsL depletion. Therefore, CrsL may in-
fluence growth at both elevated and reduced temperatures.

To test the role of CrsL under elevated temperatures, we
measured the growth of CrsL-depleted cells (crsL knock-
down) compared to the control (7cWT) strain at 45°C (heat
stress was induced during the mid-exponential phase). CrsL-
depleted cells showed slower growth compared to the control
(Fig. 8C).

The CrsL-encoding gene is organized in the two-gene
MSMEG_5890-MSMEG_5892 operon and was proposed
to be transcribed from a single promoter located upstream
of crsL [120]. This organization is highly conserved in
other mycobacterial species, including M. tuberculosis [121]
(Supplementary Fig. S10A). The second gene of the operon,
MSMEG_5892 (otsA), is not essential in M. smegmatis [122,
123] and encodes «,a-trehalose-phosphate synthase. Tre-
halose, a disaccharide important for the biosynthesis of the
mycobacterial cell wall [124-126], also functions as an os-
moprotectant during heat stress. RNA-seq analysis following
crsL knockdown showed decreased expression of both genes
in this operon (Fig. 7A and B).

Therefore, to confirm the results from the crsL knockdown
strain, we also generated a AcrsL strain, in which the crsL
gene was replaced with a hygromycin resistance gene. Ad-
ditionally, we constructed a complementation strain of the
deleted gene (AcrsL + crsL strain), in which an extra copy
of the crsL gene under its native promoter was integrated into
the genome at the L5 mycobacteriophage a#tB site. We then
measured the growth of these strains compared to the wt con-
trol strain at 37°C and 45°C (Fig. 8D and E). The AcrsL strain
showed reduced growth at the elevated temperature, similar
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to the crsL depletion strain (Fig. 8C), confirming CrsL’s role
in heat stress adaptation. The AcrsL + crsL strain was par-
tially able to rescue growth at 45°C, although the growth rate
was still not comparable to that of the wt. Interestingly, the
AcrsL + crsL strain behaved similarly to the wt during the
first 5 h of heat stress.

The complemented crsL gene is no longer part of the na-
tive operon with otsA. We confirmed that the crsL gene is
expressed in the AcrsL + crsL strain, but the levels of crsL
mRNA differ between the wt and the AcrsL + crsL strain
(Supplementary Fig. S10B). RNA-seq data indicated that crsL
may also be transcribed as part of a second operon together
with the upstream gene MSMEG_5889, from an alternative
promoter that we named PO (Supplementary Fig. S10C). We
confirmed that crsL is also transcribed from the PO promoter
(Supplementary Fig. S10D). In the AcrsL + crsL strain, the
crsL gene was cloned together with its upstream promoter P1,
but the distant PO promoter was not included, which might af-
fect the growth of the AcrsL + crsL strain at 45°C.

Then, we used the AcrsL and wt strains to test whether
CrsL affects the growth at cold temperatures. In contrast to
heat stress, the AcrsL strain exhibited enhanced growth at
16°C compared to the wt control (Fig. 8F). This phenotype
is consistent with RNA-seq data showing that CrsL represses
desA and MSMEG_1930, genes important for growth at low
temperatures. Thus, while CrsL promotes survival under heat
stress, it limits growth under cold stress, highlighting its key
role in fine-tuning bacterial adaptation across diverse temper-
ature conditions.

We conclude that CrsL is a novel transcription regulator
that interacts with CarD and RNAP, influencing the CarD-
RNAP complex formation (Fig. 8G), and is conserved among
actinobacterial species. CrsL regulates gene expression during
both growth phases. Its regulon largely overlaps with that of
CarD. Importantly, CrsL specifically controls genes required
for survival under temperature stress, enabling M. smegmatis
to adapt to both low and high temperatures.

Discussion

In this study, we expanded the interaction network of the es-
sential mycobacterial transcription factor, CarD, by identify-
ing two new interacting partners, CrsL and ApeB, in M. smeg-
matis.

ApeB is a putative aminopeptidase that cleaves proteins
from the amino terminus. The specific function of ApeB and its
homolog in M. tuberculosis is currently unknown. However,
our data suggest that ApeB interacts with CarD only under
conditions where CarD levels are elevated.

In contrast to ApeB, CrsL binds to the cellular levels of
CarD. The CrsL-CarD interaction is direct, and both proteins
associate with RNAP. What is CrsL’s role in mycobacteria?
CrsL is conserved among actinobacteria. In M. tuberculosis,
the crsL. homolog (Rv3489) is not essential [127, 128] and
its expression is predicted to be regulated by IdeR [129], an
iron-dependent regulator that represses genes involved in iron
uptake and maintains iron homeostasis. In M. bovis BCG, the
expression of the c¢rsL homolog (BCG_3553) is activated by
the Raa$S (regulator of antimicrobial-assisted survival) tran-
scription factor, which is important for mycobacterial long-
term survival [130]. Therefore, CrsL may play a role in adapt-
ing to environmental changes, such as fluctuating iron levels
or conditions associated with long-term growth.
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In M. smegmatis, CRISPR-mediated depletion of crsL
mRNA was highly effective (almost 99%), yet the reduction
in CrsL protein was suboptimal (Supplementary Fig. S7E), in-
dicating that CrsL is regulated post-transcriptionally. Bacteria
appear to compensate for the decreased level of crsL mRNA
by enhancing its translation or stabilizing the CrsL protein.
The level of CrsL protein depends on CarD, which is also
regulated post-transcriptionally by an antisense RNA of carD
(AscarD RNA) and the Clp protease [38]. These findings sug-
gest that the bacteria actively monitor CarD and CrsL levels
to maintain their optimal levels necessary for gene expression.

ChIP-seq data revealed that CrsL binding sites in the M.
smegmatis genome overlap with those of CarD as well as
RbpA, 04/68, and RNAP (Fig. 5). CrsL predominantly binds
to promoter regions, and the motif enriched in CrsL-bound
regions resembles promoter sequences. CrsL showed a similar
binding pattern to CarD, and both proteins preferentially in-
teracted with actively transcribed genes. Considering the inter-
action of CrsL with CarD and their similar expression profiles
during M. smegmatis growth, this suggests a cooperative role
in gene expression regulation. Partial depletion of CrsL altered
the expression of numerous genes, although this effect may
be underestimated due to residual CrsL protein remaining in
the cells. Notably, genes affected by CrsL depletion overlap in
part with those influenced by CarD depletion. Collectively, the
data indicate that CrsL is a component of the mycobacterial
transcriptional machinery.

Although CrsL, CarD, RbpA, 04/0®%, and RNAP proteins
can bind to the same promoters, it is possible that their
binding is sequential rather than simultaneous, and they are
not present at the same promoter at the same time. CarD
is recruited to the promoter with RNAP, where it stabilizes
the open promoter complex during transcription initiation.
CrsL appears to negatively affect the CarD-RNAP interac-
tion. ChIP-seq data may capture transient CrsL-RNAP-CarD
intermediates. Afterward, CarD dissociates from RNAP but
remains bound to CrsL. Previous studies have shown that the
regulatory effect of CarD depends on the promoter sequence,
with CarD activating transcription at unstable promoters but
repressing it at promoters with stable open complexes [32,
35]. Thus, CrsL could fine-tune transcriptional responses by
modulating the CarD-RNAP interaction through this kinetic
mechanism.

In RNA-seq data, the otsA (MSMEG_5892) expression also
decreased following CrsL depletion (Fig. 7A and B), poten-
tially due to dCas9 recruitment to the crsL gene locus within
the c¢rsL-otsA operon [41, 106]. otsA encodes an enzyme in
the conserved trehalose biosynthetic pathway, OtsA/B [131]
and has not been reported to regulate transcription. This sug-
gests that the DEGs identified by RNA-seq are primarily regu-
lated by CrsL. Trehalose protects biological molecules against
abiotic stresses. OtsA has been associated with enhanced via-
bility upon desiccation in Rhizobium etli [132] and with the
survival of Salmonella enterica at 50°C [133]. While most
prokaryotes possess only the OtsA/B pathway, mycobacteria
have the OtsA/B, TreY/TreZ, and TreS enzymes for trehalose
synthesis [125]. In M. smegmatis, these three pathways are
functionally redundant, with trehalose levels in the AotsA mu-
tant are comparable to those in the wild-type [124]. Further-
more, the AotsA shows no growth impairment at 43°C. These
findings strongly indicate that the reduced growth observed
upon CrsL depletion at elevated temperatures is primarily due
to CrsL, not OtsA. In addition, the AcrsL strain showed also
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reduced growth at 45°C confirming the role of CrsL in heat
stress adaptation (Fig. 8E). Nevertheless, the organization of
the crsL—otsA operon is conserved among actinobacteria, sug-
gesting that it has been maintained for its functional or regu-
latory advantages.

We focused specifically on the direct targets of CrsL
(Fig. 7G) and identified two genes linked to temperature-
sensitive phenotype: DesA (MSMEG_5773) is a desaturase
enzyme involved in fatty acid biosynthesis, which contributes
to membrane fluidity in cold stress [109, 134, 135]. The
DEAD/DEAH box helicase (MSMEG_1930) is an RNA chap-
erone that remodels RNA structures and RNA-protein com-
plexes in an ATP-dependent manner, supporting essential pro-
cesses in RNA metabolism, including transcription, RNA pro-
cessing, translation, and RNA decay [116, 136-138]. Un-
der cold stress, double-stranded RNA secondary structures
are formed in bacteria [139, 140] and the expression of
MSMEG_1930 is highly upregulated in the early stages of
cold stress in M. smegmatis [141]. CrsL directly regulates the
expression of desA and MSMEG_1930 by binding to their
promoters. When CrsL is depleted, expression of these genes
increases. This regulatory effect is reflected in the growth phe-
notype: the AcrsL strain grows better at 16°C than the wt
(Fig. 8F), most likely because higher expression of desA and
MSMEG_1930 provides an advantage under cold conditions.
Conversely, under heat stress (45°C), both the CrsL-depleted
strain and the AcrsL strain display impaired growth rela-
tive to the wt (Fig. 8C and E), suggesting that uncontrolled
expression of desA and MSMEG_1930 becomes detrimen-
tal at high temperatures. Together, these data demonstrate
that CrsL, which regulates genes involved in adaptation to
temperature changes, is essential for bacterial growth under
temperature-stress conditions.

Besides CarD and RNAP, CrsL also interacts with the DnaK
protein (Fig. 1A). DnaK (Hsp70) is an essential chaperone in
M. smegmatis [142]. Mycobacterial DnaK is involved in the
native folding of important proteins, such as RNAP subunits.
It also interacts with mutated, rifampicin-resistant RNAP {3
subunits, which increases antibiotic resistance [143]. Future
studies will determine whether CrsL could affect the DnaK-
RNAP interaction.

As part of the Hsp70 family of heat shock proteins, dnaK
expression increases at elevated temperatures [144]. DnaK
prevents protein aggregation, assists in the refolding of de-
natured proteins, and maintains protein quality control [145-
148]. In E. coli, DnaK regulates the availability of 32, which
controls the expression of heat shock response genes. Under
normal conditions, DnaK associates with 032, preventing o>
binding to the promoters. During heat shock, accumulated de-
natured proteins sequester DnaK, releasing 032, which then ac-
tivates the expression of heat shock response genes, including
dnaK itself. As DnaK levels increase and the amount of de-
natured proteins decreases, DnaK again sequesters 032, shut-
ting down o32-dependent transcription [149]. However, the
molecular mechanisms regulating heat shock genes differ con-
siderably among bacterial species. In mycobacteria, DnaK is
synthesized from the dnaKJE-hspR operon, which is autoreg-
ulated by the HspR repressor [144]. HspR has a C-terminal
hydrophobic tail that is the primary site where DnaK binds
[150]. DnaK enhances the DNA-binding activity of HspR
[151]. Here, we demonstrate that DnaK interacts with CrsL,
which helps bacteria adapt to temperature shifts and modu-
lates the binding of the general mycobacterial transcription

factor CarD to RNAP. Thus, CrsL represents a novel link be-
tween the DnaK heat shock protein and the regulation of the
transcriptional machinery.

CrsL contains a stretch of “MLGIGP” amino acids in its
sequence, which is highly conserved and can be considered as
hydrophobic. In addition, CrsL appears to be an intrinsically
disordered protein on its own. It is plausible that DnaK inter-
acting with CrsL affects its folding or function. The structure
of CrsL, or its interaction with DnaK (whose availability is
regulated by temperature shifts and the levels of denatured
proteins) could act as an additional sensor for temperature
fluctuations.

Additional genes regulated by CrsL are also linked to tem-
perature changes and protein folding. Based on RNA-seq data,
CrsL is a repressor for the MSMEG_0024 (Rv0009 in M. tu-
berculosis) encoding PpiA, peptidyl-prolyl cis—trans isomerase
B (Fig. 7G). These enzymes specifically catalyze the cis-trans
isomerization of peptide bonds at proline residues, accelerat-
ing protein folding and enhancing folding efficiency. Interest-
ingly, in M. tuberculosis, PpiA is repressed by HrcA [144], the
second transcriptional repressor controlling heat shock genes
(including groEL2 and groES chaperones).

Interestingly, the MSMEG_0373 promoter is exclusively
associated with CrsL and o, but not with RNAP, CarD,
and RbpA (Supplementary Fig. S8A). The MSMEG_0373 ho-
molog in M. tuberculosis is fadA2 (Rv0243). This membrane-
anchored enzyme catalyzes the final step of B-oxidation in the
fatty acid degradation pathway. This pathway involves sev-
eral steps to break down fatty acid molecules into acetyl-CoA,
which is then utilized in the tricarboxylic acid cycle [152].
FadA2 is one of six putative thiolases involved in the final
step of B-oxidation. Primary o factors, such as o?, typically
cannot stably bind to promoters on their own. Although we
only observed CrsL and o at the MSMEG_0373 promoter
by ChIP-seq, we cannot exclude the presence of additional
proteins that might associate with CrsL and o* in a larger
complex. Mycobacterial ¢* interacts with several transcrip-
tion factors, including PhoP or CRP (cAMP receptor protein,
Crpl, MSMEG_6189) [47]. CRP is a transcriptional regula-
tor that controls gene expression by recognizing altered cAMP
levels in bacteria. We propose that there may be alternative,
noncanonical mechanisms for regulating o*-dependent tran-
scription in mycobacteria, which are rare, but still present and
should be considered.

Our results show that CrsL is intrinsically disordered and
unable to form tertiary structures under normal conditions,
but it adopts a well-ordered structure upon binding CarD.
Many such proteins have been identified over the past three
decades [153, 154]. Despite lacking a defined secondary struc-
ture, these proteins remain functional and interact with var-
ious partners, serving as hub proteins that facilitate molecu-
lar communication through protein-protein interactions [1535,
156]. Moreover, many disordered proteins exist in a transient
state with preformed structural motifs [157, 158]. These pro-
teins can also adopt a defined fold upon binding with other
protein(s), both in prokaryotes [157, 159] and in eukaryotes
[160-162]. In CrsL, two regions (aa 20-27 and 34-48) are
predicted to be potentially structured. A CrsL-CarD interac-
tion predicted by AlphaFold Multimer and characterized ex-
perimentally by NMR showed that these regions are really
folded in the complex (Fig. 4 and Supplementary Fig. S2B). A
comparison with the structure of the promoter melting inter-
mediate with CarD bound to RNAP [103] suggests that CrsL


https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1342#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1342#supplementary-data

may compete with RNAP for the CarD-binding site. This was
confirmed by an in vivo experiment showing that CrsL de-
creases CarD association with RNAP in the stationary phase
of growth (Fig. 8A). The unstructured nature of CrsL might
enable its rapid association with target protein(s) (swift bind-
ing) and allow flexible interaction with diverse binding part-
ners, making CrsL well-suited for sensing and responding to
temperature-based shifts. In conclusion, this work identifies
CrsL as a mycobacterial transcription factor conserved among
actinobacteria. It also provides a foundation for future stud-
ies focusing on the molecular details of CrsL’s interaction with
CarD/RNAP, its mechanistic role, and its impact on cell phys-
iology, including the regulation of genes involved in tempera-
ture adaptation.
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