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Abstract

The RNA content is crucial for the formation of nuclear compartments, such as nuclear
speckles and nucleoli. Phosphatidylinositol 4,5-bisphosphate (PIP2) is found in nuclear
speckles, nucleoli, and nuclear lipid islets and is involved in RNA polymerase I/1l transcrip-
tion. Intriguingly, the nuclear localization of PIP2 was also shown to be RNA-dependent. We
therefore investigated whether PIP2 and RNA cooperate in the establishment of nuclear
architecture. In this study, we unveiled the RNA-dependent PIP2-associated (RDPA)
nuclear proteome in human cells by mass spectrometry. We found that intrinsically disor-
dered regions (IDRs) with polybasic PIP2-binding K/R motifs are prevalent features of
RDPA proteins. Moreover, these IDRs of RDPA proteins exhibit enrichment for phosphory-
lation, acetylation, and ubiquitination sites. Our results show for the first time that the RDPA
protein Bromodomain-containing protein 4 (BRD4) associates with PIP2 in the RNA-depen-
dent manner via electrostatic interactions, and that altered PIP2 levels affect the number of
nuclear foci of BRD4 protein. Thus, we propose that PIP2 spatiotemporally orchestrates
nuclear processes through association with RNA and RDPA proteins and affects their ability
to form foci presumably via phase separation. This suggests the pivotal role of PIP2 in the
establishment of a functional nuclear architecture competent for gene expression.
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Author summary

Our research focuses on how different molecules in the nucleus of human cells work
together to organize nuclear compartments. We focused on phosphatidylinositol 4,5-
bisphosphate (PIP2), a lipid present in various nuclear structures, and its relationship
with RNA and associated proteins. Previous studies suggested that the presence of PIP2 in
the nucleus was dependent on RNA, which led us to investigate it further. We used
advanced techniques to identify proteins associated with PIP2 and RNA in human cells.
Our results show that these proteins often have regions known to specifically bind PIP2. A
key protein in our study, BRD4, which is critical for gene expression, was found to bind
PIP2 in an RNA-dependent manner. Variations in PIP2 levels significantly affect the
number of BRD4 foci in the nucleus. Our study suggests that PIP2 is essential for organiz-
ing the nuclear environment by interacting with RNA and specific proteins to influence
gene expression. This finding helps us understand the complex organization within the
nucleus that is essential for proper cellular function.

Introduction

Differentially phosphorylated inositol headgroups of different phosphoinositides (PIPs) serve
as a recognition code for the recruitment of a plethora of interacting proteins [1-4]. PIPs are
typically embedded in eukaryotic cell membranes where they regulate processes such as vesic-
ular trafficking, actin polymerization, or autophagy [5,6]. The pioneering work on identifying
the presence of PIPs in the cell nucleus was done several decades ago [7-10] but is now receiv-
ing increasing attention. One of the most widely studied nuclear PIPs is phosphatidyl inositol
4,5-bisphosphate (PIP2). PIP2 localizes to nuclear speckles, nucleoli, and small nucleoplasmic
structures called nuclear lipid islets (NLIs) [11,12]. Nuclear PIPs are involved in gene expres-
sion [2,11,13]. In particular, nuclear PIP2 regulates transcription by affecting the condensation
capacity of the RNA Pol2 initiation complex [14]. Interestingly, nuclear compartments con-
taining PIP2, such as the aforementioned nuclear speckles, nucleoli, and nucleoplasmic tran-
scription initiation foci, are formed by the process of phase separation [15-21].

The phase separation-driven formation of membraneless compartments, sometimes
referred to as ’biomolecular condensates’, is associated with enhanced kinetics of biochemi-
cal reactions in the living cell [22-25]. The formation of these compartments provides high
local concentrations of reaction components and forms diffusion barriers that serve as
adsorption catalyst surfaces [26]. In addition, biomolecular condensates allow the sequen-
tial progression of processes through the successive coupling of subsequent reactions in
multilayered compartmentalized reaction chambers, such as ribosomal biogenesis in nucle-
oli, packaging of hnRNP particles in Cajal bodies, or the involvement of nuclear speckles in
pre-mRNA splicing [17,27-29].

The formation of phase-separated biomolecular condensates can be mathematically
described and computationally modeled using the theory of stickers and linkers [30]. Stickers
are local modules that allow multivalent intra- and intermolecular interactions and are repre-
sented by classical globular domains of proteins or by stretches of charged amino acids con-
nected by flexible linker regions in intrinsically disordered regions (IDRs) [31,32].
Condensation of IDR-containing proteins is often driven by charged amino acid stretches
within IDRs [33-35]. In addition, it has been previously described that changes in net charge
and amino acid types within an IDR can even navigate proteins to different core regions [33].
Thus, both the amino acid composition and the posttranslational modifications (PTMs),
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which together generate the charge pattern of the IDR, are important determinants of sub-
nuclear protein localization [35]. Electrostatic interactions appear to be fundamental determi-
nants of condensate properties [36,37]. Thus, negatively charged polymeric molecules such as
RNA are important factors in the formation and dissolution of some nuclear condensates.

Indeed, the biomolecular condensates in the nucleus are typically formed by low-affinity
multivalent interactions between proteins and RNA [38,39]. RNA has a positive or negative
effect on condensate formation, depending on the situation and the type of RNA [40-42]. The
short RNA molecules buffer and thus reduce the local tendency to form a condensate. Con-
versely, longer RNA molecules often increase condensate formation [40,41,43,44]. In addition,
PTMs such as phosphorylation are another important regulatory step affecting condensate for-
mation or dissolution [18,33,40,45]. The interaction between higher-order folded RNA and
lipid molecules has been suggested previously [21,46-52]. Higher-order RNA has a scaffolding
function that brings together RNA-binding proteins to form nuclear subcompartments [53-
57]. The formation of these RNA folds depends on intra- and intermolecular double-stranded
RNA (dsRNA) duplexes. However, a general mechanism or identification of common mecha-
nistic principles has been lacking.

We hypothesized that negatively charged nuclear PIPs are interesting candidates for the
regulation of biomolecular condensation via phase separation. PIPs provide a platform for
the recruitment of interacting proteins, thereby increasing their local concentration. RNA
and PIPs may cooperate in the formation of condensates, such as in the process of influenza
virus particle biogenesis [58]. PIPs carry a negative charge, which could ultimately alter the
overall net charge of condensates and thus influence condensate formation and size. There-
fore, the possible spatial interplay between nuclear PIPs and RNA in regulating condensa-
tion seems plausible. Indeed, a recent study showed that not only proteins and RNA but
also metabolites including phospholipids (e.g., PIPs) are enriched in condensates [59]. We
have previously shown that RNA is important for nuclear PIP2 levels, as RNA removal by
RNase A dramatically decreased the PIP2 signal measured by immunofluorescence [11]. In
the current study, we speculate that the higher-order RNA might be responsible for the cor-
rect localization of PIP2 in the eukaryotic nucleus. Therefore, we used bacterial RNase III,
normally associated with siRNA processing, to remove short dsRNA regions followed by
quantitative mass spectrometry (MS) proteomic analysis of the nuclear fraction. We identi-
fied the RNA-dependent PIP2-associated (RDPA) nuclear proteome and performed bioin-
formatic analyses of the physicochemical properties of the identified proteins.
Subsequently, we proposed and successfully validated a model in which nuclear PIP2 may
serve as a recognition motif that regulates the formation of Bromodomain-containing pro-
tein 4 (BRD4 protein) foci. These are known to form by phase separation and to compart-
mentalize and concentrate the transcriptional apparatus. Thus, PIP2 may play an important
role in the establishment of nuclear architecture.

Our results suggest a molecular mechanism in which PIP2 acts as a molecular wedge for the
recruitment of the lysin/arginine (K/R) motif-containing RDPA protein BRD4 by higher-
order RNA molecules. This presumably leads to local regulation of the condensation potential,
as manifested by different numbers of BRD4 foci when PIP2 levels are high. Nuclear PIP2 lev-
els may therefore dictate where certain RDPA proteins accumulate and potentially form con-
densate. Thus, changes in the localization and condensation potential of RDPA proteins could
affect the rates of the biochemical reactions involved. Taken together, our data demonstrated
the formation of a specific type of biomolecular condensates via the association of complexes
formed by RNA, proteins, and PIP2, and are therefore relevant to our understanding of the
principles underlying the establishment of functional nuclear compartments.
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Table 1. Antibodies used in this study.

Antibody Vendor Ref number | Immunofluorescence | Western Blot
Anti-PIP2 Echelon Biosciences Inc., USA AB010220-28 | 5 pg/mL

Anti-BRD4 Sigma-Aldrich, St. Louis, MO, USA HPA015055 | 0.20 ug/mL 0.20 ug/mL
Anti-SON Sigma-Aldrich, St. Louis, MO, USA HPA062997 | 1 ug/mL

Anti-PIP5KA Sigma-Aldrich, St. Louis, MO, USA HPA029366 0.10 pg/mL
Anti-SHIP2 Abcam, UK Ab70267 0.50 pg/mL
Anti-actin Sigma-Aldrich, St. Louis, MO, USA MABT219 1.7 ug/mL
Anti-GST Abcam, UK Ab6613 2 pug/mL
Anti-CAND1 Sigma-Aldrich, St. Louis, MO, USA HPA-069053 0.2 ug/mL
IRDye 800 CW Donkey anti-Rabbit IgG LI-COR Biosciences, Lincoln, NE, USA | 926-32213 0.10 ug/mL
IRDye 800 CW Donkey anti-Mouse IgG LI-COR Biosciences, Lincoln, NE, USA | 926-32212 0.10 ug/mL
IRDye 680RD Donkey anti-Mouse IgG LI-COR Biosciences, Lincoln, NE, USA | 926-68072 0.10 ug/mL
IRDye 680RD Donkey anti-Rabbit IgG LI-COR Biosciences, NE, USA 926-68073 0.10 ug/mL
Goat anti-Mouse IgG (H+L) Highly Cross-Adsorbed, Alexa Fluor 568 | Invitrogen, MA, USA A-11031 5 ug/mL

Goat anti-Rabbit IgG (H+L) Highly Cross-Adsorbed, Alexa Fluor 488 | Invitrogen, MA, USA A-11034 5 ug/mL

https://doi.org/10.1371/journal.pgen.1011462.t001

Material and methods

Cell culture, antibodies

HeLa (ATCC no. CCL2) cells were cultured in suspension in DMEM media (Sigma D6429)
supplemented with 10% fetal bovine serum in spinner flasks at 37°C 10% CO, atmosphere for
5 days. U20S (ATCC no. HTB96) were grown in DMEM media (Sigma D6429) with 10% FBS
at 37°C in a humidified 5% CO, atmosphere. Antibodies were used in this study at concentra-
tions according to the manufacturer’s instructions (Table 1).

Immunofluorescence labelling

U20S cells were grown on high-performance cover glasses of 12 mm in diameter with
restricted thickness-related tolerance (depth = 0.17 mm + 0.005 mm) and the refractive

index = 1.5255 + 0.0015 (Marienfeld 0107222). The cells were fixed with 4% formaldehyde for
20 min, permeabilized with 0.1% Triton X-100 for 5 min and three times washed in phos-
phate-buffered saline (PBS). Specimens were blocked by 5% bovine serum albumin (BSA) in
PBS for 30 min. The specimens were incubated 1 h with primary antibodies (Table 1) or
GST-PLC81 PH domain (1 pg/pl) followed by GST specific primary antibody, three times
washed with PBS and subsequently incubated 30 min with respective secondary antibodies
(Table 1). Followed by three PBS washes and one wash with tap water, the specimens were air-
dried for 20 min and mounted in 90% glycerol with 4% n-propyl gallate (NPG) media.

Nuclear RNA extraction

Suspension HeLa cells were grown in 500 mL spinner flasks in DMEM media and harvested
by 800 g centrifugation for 15 min at 4°C. HeLa cell pellets were resuspended in 3 mL of lysis
buffer (50 mM Hepes pH 7.4, 150 mM NaCl, 2 mM MgCl,, 0.5% NP-40) with 20 U RNase
inhibitor (Applied Biosystem, MA, USA, S17857). Sample was spun down at 1000 g, 4°C for 5
min. Supernatant representing cytoplasmic fraction was taken out. Additional 3 mL of lysis
buffer were added and spun at 1000 g, 4°C for 1 min and supernatant was discarded. Addi-
tional 1.2 mL of lysis buffer was added to pellet and mixed. After that step, 2.5 mL of TRIzol
(Sigma, MO, USA, BCCF2003) and 2.5 mL of chloroform were added into the sample and vor-
texed vigorously. Sample was centrifuged at 12,000 g for 5 min at 4°C. The upper phase was
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taken out and transferred to a new tube, 0.7 volume of isopropanol was added and mixed. The
sample was centrifuged at 12,000 g for 15 min at 4°C. Supernatant was removed, the pellet was
washed by 80% ethanol and aspirated. The pellet was air dried for 10 min, dissolved in water
and RNA concentration was measured by NanoDrop. The DNA was cleaved out by incubation
with DNase I enzyme, when 160 pg of RNA was mixed with 12 pL of supplied reaction buffer
and 30 U of DNase I (Sigma, MO, USA, D4527). The reaction was incubated for 30 min at
37°C, then mixed with 0.8 volume of isopropanol and centrifuged at 12,000 g for 15 min at
4°C. Pellet was washed with 80% of ethanol, air-dried for 10 min at RT, and dissolved in RNA-
free water. The concentration of RNA was determined by NanoDrop measurement.

RNase III treatment of U20S cells

To obtain semi-permeabilized cells, 90% confluent U20S cell cultures were washed twice with
PBS. Cells were permeabilized by 0.1% Triton X-100 at RT in buffer (20 mM Hepes pH 7.4,
150 mM NaCl, 25% glycerol, 1 mM DTT, cOmplete EDTA-free protease inhibitor cocktail (La
Roche Ltd., Basel, Switzerland, 05056489001). Semi-permeabilized and non-permeabilized
cells were treated for 10 min at RT by RNase III enzyme (2 U of RNase III (Short Cut, New
England BioLabs, Massachusetts, USA, M0245S) with 20 mM MnCI2 in 1x reaction ShortCut
buffer). This step was followed by five times wash in PBS and fixation by 4% PFA for 15 min at
RT. Cells were than permeabilized by 0.2% Triton X-100 for additional 15 min at RT. After
three PBS washes, the cells were blocked for 30 min in 3% BSA in PBS and subjected to immu-
nofluorescence protocol. Measured integral signal density of nuclear PIP2 signal was analyzed
by FIJI software [60]. Data were obtained from three biological replicates, in total 76 cells were
quantified for non-treated control cells condition, and 89 cells were quantified for RNase III
treated cells condition and N = 58 RNase III-treated non-permeabilized cells.

Colocalization evaluation of immunofluorescence

Colocalization of epitopes was evaluated by the image analysis carried out using the Coloc2
plugin in FIJI software calculating three different correlation coefficients as suggested in [61].
The nuclear outlines were segmented manually. The degree of colocalization was determined
by Pearson’s correlation coefficient, Spearman’s rank correlation value, and Manders’ correla-
tion coefficients (M1 and M2) of the signals from the two analyzed channels. The significance
of each statistical analysis was determined by the Student’s t-tests. The randomized images
were obtained as described in [61].

Nuclear lysate preparation

One litre of suspension culture of HeLa cells was spun at 1300 g at 4°C for 15 min. The pellet
was resuspended in 7 mL of buffer (50 mM Hepes pH 7.4, 150 mM NaCl, 1 mM DTT, cOm-
plete (La Roche Ltd., Basel, Switzerland, 05056489001)) and subjected to 20 strokes in Dounce
homogenizer. Cell nuclei were sedimented by 1800 g centrifugation at 4°C for 5 min. The
supernatant was collected as a cytoplasmic fraction. The nuclear pellet was washed four times
in 10 mL of buffer. The clean nuclear pellet was sonicated in Soniprep 150 (MSE, London,
UK) bench top sonicator (1 s on, 1 s off for 30 cycles at the power of 10 microns amplitude).
Sonicated lysate was spun down at 13,000 g at 4°C for 15 min. The supernatant was collected
as a nuclear fraction. Protein concentration was determined by Pierce BCA Protein Assay
(Thermo Fisher Scientific, Waltham, MA, USA, 23227) according to the manufacturer’s
protocol.
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Preparation of PLC31 PH domain

For expression and purification of GST-tagged recombinant proteins PLC81 PH domain (1-
140 aa) wild type and R40A mutation of PLC31 PH domain in pGST5 were used plasmids con-
structed previously [62]. The PIP-binding protein domains were expressed in 100 mL of BL21
(DE3)-pLysS E. coli (Stratagene, Santa Clara, USA) culture. Transformed cells were incubated
for approximately 4 h at 37°C until OD = 0.6. Expression was then induced by 0.1 mM IPTG
for an additional 2 h. Samples were lysed by sonication with Soniprep 150 (MSE, London, UK)
benchtop sonicator (4 s on, 4 s off for 1 min at power 10 microns of amplitude) in ice-cold
buffer (50 mM Hepes pH 7.5, 150 mM NaCl, 1 mM DTT, cOmplete (La Roche Ltd., Basel,
Switzerland, 05056489001)) and spun down at 13,000 g at 4°C for 15 min. Supernatants were
used for purification of recombinant proteins by 2 h incubation with GST-agarose beads at
4°C according to the manufacturer’s protocol (Sigma Aldrich, St. Louis, USA, G4510).
SDS-PAGE electrophoresis was used to check the level of expression and purity of
purification.

Pull-down assay with PIPs-conjugated beads at various treatment
conditions

Four mL of nuclear lysate from suspension culture of HeLa cells at protein concentration of
2.5 mg/mL were prepared in buffer (50 mM HEPES, pH 7.4, 150 mM NaCl, 1 mM DTT, cOm-
plete (La Roche Ltd., Basel, Switzerland, 05056489001) and PhosStop RNase inhibitors (La
Roche Ltd., Basel, Switzerland, 4906837001) and 2 mM MgCl, for experiments “PIP2-conju-
gated agarose beads pull-down assays from nuclear lysates with added nuclear RNA extract
upon different conditions.”, S18 and S20). The following types of agarose beads were used in
pull-down assays: Control Beads, P-B000; PI(3)P beads, P-B003A; PI(4)P beads, P-B004A; PI
(5)P beads, P-B005A; PI(3,4)P2 beads, P-B034A; PI(3,5)P2 beads, P-B035A; PI(4,5)P2 beads,
P-B045A; PI(3,4,5)P3 beads, P-B345A (Echelon Biosciences Inc., UT, USA). Forty uL of beads
slurry were added into 650 pL of nuclear lysate nuclear in experiment shown in S19 Fig supple-
mented with 30 pg of RNA with the increasing concentration of MgCl, (0 mM, 0.1 mM, 0.5
mM, 1 mM, 2.5 mM, 5 mM, 10 mM, 25 mM, 50 mM and 100 mM) per condition and incu-
bated overnight at 4°C. To test the biochemical nature of PIP2-BRD4 and PIP2-CANDI asso-
ciation (experiment “PIP2-conjugated agarose beads pull-down assays from nuclear lysates
with added nuclear RNA extract upon different conditions.” and S18), the following treat-
ments were used in the respective specimens: the addition of 30 pg of nuclear RNA extract,
300 mM NaCl, 100 mM NH,OAc, 10% 1,6-hexanediol, and 10% dextran. The beads were
washed three times with 1 mL of ice-cold buffer and spun down at 800 g at 4°C for 5 min. The
supernatant was discarded, and the beads were boiled in 30 uL of Laemmli buffer for 10 min.
The beads were spun down, and the supernatant was loaded into the SDS-PAGE gel. After
trans-blotting, the membranes were blocked with 3% BSA for 30 min. The membranes were
washed with 0.5% Tween 20/PBS for 15 min. The dilution of the primary antibody (Table 1)
was prepared in 3% BSA/PBS and incubated for 2 h. Secondary antibody was used according
to manufacturer’s instruction (Table 1). Western blot (WB) signals at each pull-down condi-
tion in every repetition were normalized to the highest signal (the PIP2 beads with RNA added
condition). Statistical analysis was performed using Student’s t-tests on three replicates.

Isolation of natural PIP2-structures and testing of BRD4-association

Four mL of nuclear lysate from suspension culture of HeLa cells at protein concentration 2.5
mg/mL were prepared in buffer (50 mM HEPES, pH 7.4, 150 mM NaCl, 2 mM MgCl,, ] mM
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DTT, cOmplete (La Roche Ltd., Basel, Switzerland, 05056489001) and PhosStop RNase inhibi-
tors (La Roche Ltd., Basel, Switzerland, 4906837001)). Two types of GST agarose beads were
used in the pull-down assays: GST-PLC81 PH domain (1-140 amino acids, wild type) and
R40A mutation of GST-PLC81 PH domain. Twenty pL of beads slurry were added into 650 uL
of nuclear lysate per condition and incubated overnight at 4°C. To test the biochemical nature
of BRD4 association with PIP2-containing structures, the following treatments were used in
respective specimens in experiments “PIP2-conjugated agarose beads pull-down assays from
nuclear lysates with added nuclear RNA extract upon different conditions.”: the addition of
30 ug of nuclear RNA extract, 300 mM NaCl, 100 mM NH,OAc, 10% 1,6-hexanediol, and 10%
dextran. The beads were washed three times with 1 mL of ice-cold buffer and spun down at
800 g at 4°C for 5 min. The supernatant was discarded, and the beads were boiled in 30 uL of
Laemmli buffer for 10 min. The beads were spun down, and the supernatant was loaded into
the SDS-PAGE gel. After trans-blotting, the membranes were blocked with 3% BSA for 30
min. The membranes were washed by 0.5% Tween 20/PBS for 15 min. The dilution of the
BRD4 primary antibody was prepared in 3% BSA/PBS and incubated for 2 h. A secondary
antibody was used according to the manufacturer’s instructions (Table 1). WB signals at each
pull-down condition in every repetition were normalized to the highest signal of the wild type
GST-PLCd1 PH domain with RNA added condition. Statistical analysis was performed using
Student’s t-tests on six replicates.

PIP2-conjugated beads pull-down assay with spiked recombinant
GST-PLCo1 PH domain

Two mL of nuclear lysate from suspension culture of HeLa cells at protein concentration of 2.5
mg/mL were prepared in buffer (50 mM HEPES, pH 7.4, 150 mM NaCl, 2 mM MgCl,, 1 mM
DTT, cOmplete (La Roche Ltd., Basel, Switzerland,05056489001) and PhosStop RNase inhibi-
tors (La Roche Ltd., Basel, Switzerland, 4906837001)). Two types of agarose beads were used in
pull-down assays: control beads, P-B000 (Echelon Biosciences Inc., UT, USA) and PI(4,5)
P2-conjugated beads, P-B045A (Echelon Biosciences Inc., UT, USA). Forty uL of beads slurry
were added into 650 pL of nuclear lysate per condition and incubated overnight at 4°C. To test
the specificity of the effect of RNA on PIP2 binding of BRD4 protein the addition of 30 pg of
nuclear RNA extract and 1 pg of purified recombinant soluble GST-PLC31 PH domain (1-140
amino acids, wild type or R40A mutation), were used in the respective specimens in experi-
ments “PIP2-conjugated agarose beads pull-down assays from nuclear lysates with added
nuclear RNA extract upon different conditions.”. The beads were washed three times with 1
mL of ice-cold buffer and spun down at 800 g at 4°C for 5 min. The supernatant was discarded,
and the beads were boiled in 30 pL of Laemmli buffer for 10 min. The beads were spun down,
and the supernatant was loaded into the SDS-PAGE gel. After trans-blotting, the membranes
were blocked with 3% BSA for 30 min. The membranes were washed with 0.5% Tween 20/PBS
for 15 min. The dilutions of the primary antibodies (anti-GST, anti-BRD4) were prepared in
3% BSA/PBS and incubated for 2 h. Secondary antibodies were used according to the manu-
facturer’s instructions (Table 1). WB signals at each pull-down condition in every repetition
were normalized to the signal from the PIP2-beads pull-down signal, wild-type GST-PLC81
PH domain-the condition with RNA added. Statistical analysis was performed using Student’s
t-tests on four replicates.

Mass spectrometry experimental pipeline

One mL of nuclear fraction from suspension culture of HeLa cells with a protein concentration
of 2.5 mg/mL was used per condition in three independent biological replicates. Twenty-
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five pL of washed wild-type or R40A mutation GST-PLCS81 PH domain immobilized to gluta-
thione agarose beads were added into the respective reactions and incubated at 4°C for 1.5 h
while rotating to allow PIP2-PH domain interaction. The RNase III-treated samples were pre-
incubated with 4 U of RNase III (New England Biolabs, Ipswich, Massachusetts, USA,
M0245S) in a reaction supplemented by 20 mM MnCl, at 15°C for one hour. These samples
were incubated with wild-type GST-PLCS1 PH domain. After the incubation of all samples,
the beads were centrifuged at 300 g at 4°C for 2 min. The supernatant from each sample was
carefully discarded. Beads were spun down and washed twice in 1 mL of buffer (50 mM
Hepes, pH 7.4, 150 mM NaCl, 1 mM DTT, cOmplete (La Roche Ltd., Basel, Switzerland,
05056489001)) and subjected to sample preparation for MS measurement. Beads were resus-
pended in 100 mM triethylammonium bicarbonate (TEAB) containing 2% sodium deoxycho-
late (SDC). Proteins were eluted and cysteines were reduced in one step by heating with 10
mM final concentration of Tris-(2-carboxyethyl)phosphine (TCEP; 60°C for 30 min). Beads
were removed by centrifugation, and proteins in the supernatant were incubated with a 10
mM final concentration of methyl methanethiosulfonate (MMTS; 10 min RT) to modify
reduced cysteine residues. In-solution digestion was performed with 1 pg of trypsin at 37°C
overnight. After digestion, the samples were centrifuged, and the supernatants were collected
and acidified with trifluoroacetic acid (TFA, final concentration of 1%). SDC was removed by
ethylacetate extraction [63]. Peptides were desalted using homemade stage tips packed with
C18 disks (Empore) according to Rappsilber et al. [64].

One liter of suspension culture of HeLa cells was spun at 1300 g at 4°C for 15 min. The pel-
let was resuspended in 7 mL of buffer (50 mM Hepes pH 7.4, 150 mM NaCl, 1 mM DTT,
cOmplete (La Roche Ltd., Basel, Switzerland, 05056489001)) and subjected to 20 strokes in
Dounce homogenizer. Cell nuclei were sedimented by 1800 g centrifugation at 4°C for 5 min.
The supernatant was collected as a cytoplasmic fraction. The nuclear pellet was washed four
times in 10 mL of buffer. The clean nuclear pellet was sonicated in Soniprep 150 (MSE, Lon-
don, UK) bench top sonicator (1 s on, 1 s off for 30 cycles at the power of 10 microns ampli-
tude). Sonicated lysate was spun down at 13,000 g at 4°C for 15 min. The supernatant was
collected as a nuclear fraction. Three independent biological replicates per sample were pre-
pared for MS analysis as described above.

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis

Nano reversed-phase column (EASY Spray column, 50 cm, 75 pm ID, PepMap C18, 2 um par-
ticles, 100 A pore size) was used for LC-MS/MS analysis. The mobile phase A was composed of
water and 0.1% formic acid. The mobile phase B was composed of acetonitrile and 0.1% formic
acid. The samples were loaded onto the trap column (Acclaim PepMap 300, C18, 5 um, 300 A,
300 um, 5 mm) at 15 uL/min for 4 min. The loading buffer was composed of water, 2% aceto-
nitrile, and 0.1% TFA. Peptides were eluted with the mobile phase B gradient from 4% to 35%
in 60 min. Eluting peptide cations were converted to gas phase ions by electrospray ionization
and analyzed on a Thermo Orbitrap Fusion (Q OT qIT, Thermo Fisher Scientific, Waltham,
MA, USA). Survey scans of peptide precursors from 350 to 1400 m/z were performed at 120 K
resolution (at 200 m/z) with a 5x10° ion count target. Tandem MS was performed by isolation
at 1.5 Th with the quadrupole, HCD fragmentation with normalized collision energy of 30,
and rapid scan MS analysis in the ion trap. The MS/MS ion count target was set to 10, and the
max injection time was 35 ms. Only those precursors with charge states 2—6 were sampled for
MS/MS. The dynamic exclusion duration was set to 45 s with a 10 ppm tolerance around the
selected precursor and its isotopes. Monoisotopic precursor selection was turned on. The
instrument was run in top speed mode with 2 s cycles [65].
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Raw data processing

Raw data files acquired by LC-MS/MS were processed with MaxQuant v1.6.11.0 [66]. Peak
lists were searched against the human SwissProt database (May 2020) using the Andromeda
search engine [67]. The minimum peptide length was set to seven amino acids, and two missed
cleavages were allowed. Dithiomethylation of cysteine was set as a fixed modification, while
oxidation of methionine and protein N-terminal acetylation were used as variable modifica-
tions. Only peptides and proteins with a false discovery rate (FDR) lower than 0.01 were
accepted. Protein intensities were normalized using MaxLFQ algorithm [68]. MaxQuant out-
put data were further analyzed using Perseus v1.6.13.0 [69] and visualized in R v4.0.0 [70].
Briefly, protein groups identified at the 0.01 FDR level were further filtered to remove potential
contaminants, decoys, and proteins identified based on modified peptides only. The resulting
matrix was filtered based on the number of missing values (100% of valid values in at least one
of the groups), and after log2 transformation, missing values were imputed from a normal dis-
tribution (width = 0.3 times standard deviation (SD) and shift = 1.8 times SD of the original
distribution). One replicate from the samples enriched using the wild-type GST-PLCS1 PH
domain-conjugated beads was identified as an outlier with an overall lower MS intensity and
removed from the downstream analysis.

Identification of nuclear RNA-dependent PIP2-associated (RDPA)
proteins

A two-step statistical analysis was performed to identify the RNA-dependent PIP2-associated
(RDPA) proteins. In the first step, the “PIP2-associated proteome” was identified by compar-
ing the proteome enriched using the wild-type GST-PLC81 PH domain-conjugated beads to
the proteome enriched using the point mutation (R40A) GST-PLC81 PH domain-conjugated
beads; a one-sided Student’s t-test was performed with a permutation-based FDR correction.
In the second step, the significant proteins (FDR < 0.05, SO = 0.2, n = 195 protein groups)
were then compared to the samples enriched using the wild-type PLC81 PH domain-conju-
gated beads from samples pretreated with RNase III. A two-sided Student’s t-test with a per-
mutation-based FDR correction was applied to identify differentially enriched (FDR < 0.05,
S0 = 0.2) protein groups after RNase III treatment (n = 183; downregulated n = 168). In both
comparisons, Student’s t-test was performed in Perseus v1.6.13.0 (S1 Table). The results were
visualized using the R package “ggplot2”.

Manipulation of PIP2 level in cells

MISSION esiRNA (Sigma-Aldrich, USA, EHU114801-20UG) was used to deplete human
PIP5K1A. MISSION esiRNA (Sigma-Aldrich, USA, EHU081051-20UG) was used for deple-
tion of the human SHIP2. MISSION siRNA Universal Negative Control #1 (Merck, NJ, USA,
SIC001) was used as the negative control. U20S cells were seeded 24 h before the transfection
on 12 mm in diameter glass coverslips with restricted thickness-related tolerance (depth = 0.17
mm * 0.005 mm) and the refractive index = 1.5255 + 0.0015 (Marienfeld, 0107222) at 70%
confluency. The cells were transfected using Lipofectamine RNAiMax (Invitrogen, MA, USA,
13778150) for 24 h according to the manufacturer’s protocol and subjected to immunofluores-
cence staining. Protein depletion efficiency was confirmed by WB assay (S21B Fig) and quanti-
fication of changes in nuclear PIP2 levels was performed based on the IF signal. Alternatively,
the SHIP2 inhibitor K149 at a concentration of 10 uM (Echelon Biosciences Inc., UT, USA, B-
0345) was used for 1 hour to increase PIP2 levels (S22 Fig). The images were acquired at Leica
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STELLARIS 8 FALCON (Leica Mikrosysteme Vertrieb GmbH, Wetzlar, Germany) confocal
microscope with x 63 oil objective NA 1.4.

Image analysis of BRD4 protein foci

Identification of foci was performed using a macro pipeline written in FIJI software [60].
Briefly, the channels from the Z-stack acquisition were split and analyzed in sequence. First,
the nuclear area detected by the DAPI signal was identified. The nuclear area was further pro-
cessed using the 3D Gaussian blur function. Next, the channel with visualized protein was pro-
cessed by Gaussian blur 3D on the ROI previously identified as the nuclear area and the
outside was deleted. The 3D object counter was then used to identify the protein foci using a
minimum size filter of 10 voxels. The results showed the number of foci per cell. Statistical
analysis was performed using the Student’s test.

Functional characterization of the RDPA proteome using Metascape

The functional gene ontology (GO) analysis of the RDPA proteome (proteins associated with
PIP2 in RNA-dependent positive manner) was performed by the Metascape tool using the
default settings [71]. The protein list for Metascape analysis comprised of 168 proteins; one
majority protein ID was selected per protein group (517 Table). The analysis was performed
against a default Metascape background set—human proteome (518 Table), or against proteins
identified in the nucleus—Nuclear fraction proteins (183 RDPA proteins were analyzed, with
all majority protein IDs selected per protein group; S19 and 520 Tables). The enriched func-
tional terms were identified using a default Metascape algorithm using a hypergeometric test.
The significant terms were then hierarchically clustered into a tree based on Kappa-statistical
similarities among their gene memberships. Then 0.3 kappa score was applied as the threshold
to cast the tree into term clusters. We then selected a subset of representative terms from this
cluster and converted them into a network layout. More specifically, each term is represented
by a circle node, where its size is proportional to the number of input genes belonging to the
term, and its color represents its cluster identity (i.e., nodes of the same color belong to the
same cluster). Terms with a similarity score > 0.3 are linked by an edge (the thickness of the
edge represents the similarity score). The network was visualized with Cytoscape (v3.1.2)
applying a “force-directed” layout. One term from each cluster was selected to have its term
description shown as a label.

Data preparation for bioinformatic analyses

Majority protein IDs from significant protein groups (see Raw data processing) were mapped
to the UniProtKB database [72] (Homo sapiens, Swiss-Prot, reference proteome UP000005640,
release 2022_01) and their canonical protein sequences were obtained. Seven datasets were
used for further analyses: i) proteins associated with PIP2 in higher-order RNA-dependent
positive manner (called RDPA proteins, n = 183); ii) proteins quantifiable in at least two repli-
cates of nuclear fraction, but not in cytosolic fraction, with RDPA proteins added (called
Nucleo-specific proteins, n = 848); iii) proteins quantifiable in at least two replicates of nuclear
fraction, with RDPA proteins added (called Nuclear fraction proteins, n = 3,655); iv) proteins
quantifiable in at least two replicates of cytosolic fraction, but not in nuclear fraction (called
Cytosol-specific proteins, n = 428); v) proteins quantifiable in at least two replicates of cyto-
solic fraction (called Cytosolic fraction proteins, n = 3,379); vi) all proteins quantifiable in at
least two replicates of cytosolic or nuclear fraction, with RDPA proteins added (called Total
cell proteome, n = 4,082) and vii) reference human proteome from UniProtKB with one pro-
tein sequence per gene (called Reference proteome, n = 20,577). The complete list of employed
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protein IDs and the graphical illustration of overlaps between original datasets are in S3 Fig
and S3 and 54 Tables.

Search for protein domains binding to PIP2

Protein domains able to bind to PIP2 were selected based on previously published data [73-
76]. The PROSITE database [77] and InterPro database [78] were used to search for proteins
with such features in the Swiss-Prot database (Homo sapiens, reference proteome
UP000005640, release 2022_02), resulting in 1,552 distinct proteins. This protein list was then
compared with our datasets (S5 Table).

RNA-binding capability
Protein IDs from datasets were compared to the list of all human proteins with experimental

evidence for RNA-binding, according to the RN Act database [79] (3,717 reviewed proteins
from Swiss-Prot, mapped to the reference proteome UP000005640) (S6 and S8 Tables).

Association with phase separation

Protein IDs from datasets were compared to the list of all human proteins associated with
phase separation or membraneless organelles, according to PhaSepDB2.0 [80] (4,014 reviewed
proteins from Swiss-Prot, mapped to the reference proteome UP000005640) (S7 and S8
Tables).

Prediction of intrinsically disordered regions (IDRs)

Disordered regions were predicted by ESpritz (version 1.3) [81] with three prediction types:
X-Ray, Disprot, and NMR, and a decision threshold of 5% False Positive Rate (S9 Table). For
further analysis, an R-based script (R, version 4.3.1) [70] was created, which uses UniProtKB
accession numbers and searches them against the Database of Disordered Protein Predictions
(D2P2) [82]. However, not all UniProtKB accession numbers were successfully mapped to
D2P2. On average, we retrieved the information for 95.6% (from 94.5% to 96.5%) of the input
protein sequences for most of the datasets. The exception was the Reference proteome, where
we retrieved information for 88.9% of the input protein sequences. Protein was counted as
IDR-containing protein only if at least one IDR with a minimum length of 20 amino acid resi-
dues was predicted in this protein. The pI and hydrophobicity of the disordered regions were
calculated using the R package “peptides”, functions pl, and hydrophobicity. The hydropho-
bicity of each IDR was determined based on grand average of hydropathy (GRAVY) value, cal-
culated as the sum of hydropathy values of all amino acids in the IDR divided by the length of
the IDR. Thus, lower values indicate more hydrophilicity and higher values more hydropho-
bicity of an IDR.

K/R-rich motifs abundance analysis

Short sequence motifs rich for lysine and/or arginine (K/R motifs) were analyzed as described
previously [83]. Briefly, K/R motifs: [KR]-x(3,7)-K-x-[KR]-[KR], [KR]-x(3,7)-K-x-[KR] and
[KR]-x(3,7)-K-x-K were searched in all datasets using ScanProsite tool [84], match mode set as
greedy, no overlaps (S10 Table).

Analysis of K/R motifs enrichment in IDRs

The analysis was performed using a custom R-based script (R, version 4.3.1), which uses infor-
mation about the presence of K/R motif in the dataset from the ScanProsite tool, and searches
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UniProtKB accession numbers of such proteins against D2P2. K/R motif was counted as pres-
ent in IDR only if at least three predictors from the D2P2 predicted IDR with a minimum
length of 20 amino acid residues at the site of the K/R motif (SI11 Table).

Analysis of the function of K/R motifs in IDRs

Localization of K/R motifs (i.e., [KR].{3,7}K.[KR][KR], [KR].{3,7}K.[KR] and [KR].{3,7}K.K)
in proteins to structured regions or IDRs and GO analyses of proteins containing such motifs
were assessed with SLiMSearch4 tool [85], with disorder score cut-off set to 0.95 (S21-S29
Tables). The results of the analysis were visualized using “bubble plots”. In the plots, the y-axis
shows the-log10 adjusted p-value of proteins from a GO category, and the x-axis shows the
log2 enrichment factor. The size of the bubble corresponds to the number of proteins.

PTM site proximity analysis

A database of known posttranslational modification (PTM) sites was downloaded (August 6,
2022) from the PhosphoSitePlus database [86]. For the following known PTMs: acetylation,
methylation, phosphorylation, sumoylation, and ubiquitination, we explored whether they are
located in the IDR containing the K/R motifs identified by the abovementioned analysis of K/
R motifs enrichment in IDRs using a custom R-based script (S16 Table).

Statistical analyses and data visualization

Statistical relevance of depletion or enrichment of a particular feature (e.g., IDR content)
between datasets was analyzed in R, version 4.1.3 [70] using a hypergeometric test (function
phyper). All plots were generated using the R package “ggplot2” [87]. In the boxplots, the bold
line indicates the median value; box borders represent the 25th and 75th percentiles, and the
whiskers represent the minimum and maximum value within 1.5 times of interquartile range.
Outliers out of this range are depicted using solid dots.

Results and discussion
RNA is important for PIP2 nuclear localization

RNA is the critical integral element for the coherence of many membraneless structures
[88,89]. Indeed, RNA is important in regulating the phase separation of proteins forming con-
densate assemblies [90]. The scaffolding RNA typically adopts higher-order folds that are
enabled by the formation of dsRNA regions [91,92]. We therefore hypothesized that higher-
order RNA structures are important for PIP2 localization in the nucleus. To test this hypothe-
sis, we used RNase III treatment of semi-permeabilized cells followed by immunofluorescence
labeling of PIP2 and the nuclear speckles marker protein SON. RNase III does not have a con-
served target sequence but recognizes dsRNA structures [93,94]. The nucleus is a very dense
environment and nuclear PIP2 forms sub-diffraction-limited foci in the nucleoplasm, so we
used super-resolution microscopy [95-98]. We observed that RNase IIT-mediated RNA cleav-
age greatly reduced the total nuclear PIP2 signal, whereas based on SON staining, the struc-
tural integrity of nuclear speckles is not completely abolished (Fig 1A and 1B). In addition, our
results show that PIP2 levels in both the nucleoplasm and nuclear speckles decrease to a similar
extent upon RNA cleavage (Fig 1C). The RNase III treatment of non-permeabilized cells had
no effect on nuclear PIP2 levels (S1 Fig). These results suggest that the nuclear localization of
PIP2 is dependent on the presence of higher-order RNA in specific regions. Thus, this observa-
tion postulates an intimate relationship between PIP2 and RNA in the nucleus.
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Fig 1. Identification of the RNA-dependent PIP2-associated (RDPA) nuclear proteome. (A-B) The effect of RNase III treatment on PIP2 and SON
localization in cell nuclei visualized by immunofluorescence staining and super-resolution microscopy. U20S cells were semi-permeabilized, treated by RNase
11, and subsequently stained with PIP2 and SON-specific antibodies. Images were acquired by structured illumination microscopy (SIM). A) Mock-treated
U20S cell nucleus, B) RNase III-treated nucleus with detailed zoom-in insets of PIP2 and SON localization in the nucleoplasmic and nuclear speckle
subcompartments. Scale bars correspond to 5 um and 1 pm in the image and inset details, respectively. C) Quantification of normalized mean PIP2 signal
intensity levels upon RNase III treatment in segmented nuclei for nuclear speckles (Sp) and nucleoplasm (Np) regions. Statistical analysis was performed using
Student’s t-tests. Error bars correspond to SEM (**** P < 0.0001), n = 3, N = 76 cells mock-treated, N = 89 RNase I1I-treated cells. D) Volcano plot shows the
PIP2-associated nuclear proteome identified by MS analysis; the significantly enriched protein groups (n = 195) are depicted in green (FDR < 0.05 & SO = 0.2).
E) Volcano plot of proteins whose PIP2-structures association is regulated by the presence of higher-order RNA. Protein groups showing a statistically
significant (FDR < 0.05 & SO = 0.2) loss (n = 168; RDPA dsRNA+, marked in blue, positively regulated by higher-order RNA) or gain (n = 15; RDPA dsRNA-,
marked in purple, negatively regulated by higher-order RNA) of association with PIP2 after dsSRNA cleavage are shown in blue or purple, respectively. A
Student’s t-test with a permutation-based FDR correction was performed using a function provided in the Perseus software.

https://doi.org/10.1371/journal.pgen.1011462.9001

Identification of RNA-dependent PIP2-associated nuclear proteome

We searched for proteins that are important for the formation of the nuclear architecture
dependent on the interplay between RNA and PIP2. Given the importance of RNA in the for-
mation of nuclear subcompartments, it has been suggested to use RNases to identify proteins
involved in the formation of nuclear structures generated by phase separation [92]. We aimed
to identify the proteins, presumably components of complexes that associate with PIP2-con-
taining structures in a higher-order RNA-dependent manner. The phospholipase C pleckstrin
homology (GST-PLC381 PH) domain has a well-documented specificity for PIP2 binding.
Therefore, we developed a label-free quantitative MS approach based on GST-PLC81 PH
domain pull-downs from nuclear lysates treated or untreated with RNase III. The wild-type
GST-PLC381 PH domain binds PIP2 with high specificity, whereas its point mutation R40A
abolishes its binding [62]. We confirmed the specificity of GST-PLC81 PH domain to bind
PIP2 by labeling its purified recombinant GST-tagged proteins combined with PIP2-specific
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antibody in immunolabeling of U20S analyzed by confocal microscopy. Both the antibody and
the recombinant GST-PLC81 PH domain show a high degree of signal overlap (S2 Fig). In the
first step of this experimental workflow, we prepared nuclear lysates suitable for comparative MS
as described previously [83]. The wild-type and R40A GST-PLCS81 PH domain variants were
attached to agarose beads via a glutathione S-transferase (GST) tag and incubated with the
nuclear lysates. Analysis of MS data of proteins bound to both domains with differential abun-
dance led to the identification of the PIP2-associated nuclear proteome (Fig 1D). In parallel,
dsRNA in the third nuclear lysate sample was digested with RNase III prior to the wild-type
GST-PLC381 PH domain pull-down and subsequent MS measurement. This step resulted in the
depletion of 168 protein groups and the enrichment of 15 protein groups, allowing us to identify
PIP2-associated proteins that were differentially changed upon dsRNA cleavage (Fig 1E). The
approach presented here identifies not only direct but also indirect interactors, i.e., components
of protein complexes. It is a different approach than using immobilized PIP2 on beads, which we
have previously used to identify PIP2 interactors [83]. Thus, the GST-PLC81 PH domain-based
approach identifies naturally occurring PIP2-containing nuclear structures associated with pro-
tein complexes. Therefore, this experimental pipeline allowed us to determine the nuclear RNA-
dependent PIP2-associated (RDPA) proteome. Our data show that the vast majority of PIP2-asso-
ciated proteins lose their PIP2 association upon removal of higher-order RNA (Fig 1E).

PIP2 is normally embedded in cytoplasmic membranes where it regulates various processes
through interactions with a variety of proteins with PIPs binding domains. We hypothesized
that nuclear PIP2 might be also involved in the recognition and binding of various proteins,
thereby regulating the localization of their actions. Such proteins typically contain canonical
PIPs binding domains with well-defined globular structures, e.g., pleckstrin homology (PH),
phox homology (PX), Fab-1, YGL023, Vps27 and EEA1 (FYVE) domains, etc. To assess the
abundance of PIPs binding domains in the RDPA proteome, we generated in parallel several
reference datasets by analyzing the nuclear and cytosolic fractions isolated from the same
HeLa cell line using the same LC-MS/MS proteomic pipeline (see M&M section for more
details). We then searched for these domains in the RDPA proteome and in datasets of pro-
teins identified exclusively in the nucleus (‘'nucleo-specific’, 848 proteins) and in the cytosol
(cytosol-specific’, 428 proteins). In addition, we generated the "total cell proteome’ (4,082 pro-
teins) by combining all proteins identified in our MS analyses of nuclear and/or cytosolic pro-
teomes. For comparison, we also provide the analysis of the additional proteomes, i.e., ‘nuclear
fraction’ proteins, ’cytosolic fraction’ proteins, and 'reference proteome’ (S3 Fig and S3 and S$4
Tables; see M&M for details). However, in agreement with previously published data [2,83],
the frequency of canonical PIPs binding domains was very low in both RDPA subpopulations.
Only 11 out of 183 RDPA proteins positively regulated by the presence of higher-order RNA
contain the PIPs binding domains (S5 Table), suggesting that these domains are not a major
route of PIP2 association. Interestingly, none of the proteins negatively regulated by the pres-
ence of higher-order RNA possess such a domain. Notably, this dataset (16 proteins) that
showed increased PIP2 binding upon higher-order RNA cleavage is rather small for reasonable
statistical correlation with other datasets. Therefore, we focused further analyses only on
RDPA proteins with a positive higher-order RNA effect on their PIP2 binding, and unless oth-
erwise noted, the term RDPA proteins refers to this subpopulation.

RDPA proteome is enriched for proteins with phase separation capacity
and PIP2-binding motifs in their IDRs

Nuclear PIP2 localizes to two archetypal liquid-like structures formed by phase separation—
nuclear speckles and nucleoli [17,25,29]. The appropriate subcompartmentalized nature of
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such multiphase structures depends on the presence of architectural RNAs [27,55,91,99,100].
Furthermore, there is a higher concentration of RNA in the nucleus compared to the cytosol,
suggesting that RNA is the critical driving force for the preferential formation of such structures
in the nucleus. Our bioinformatic analyses confirmed the enrichment of RNA-binding proper-
ties within the RDPA proteome (Figs 2A and S4A and S6 Table), a predictable feature due to
the RNase III treatment step in our MS workflow. Importantly, we showed that the RDPA pro-
teome is the most enriched for proteins with the ability to phase separate from all datasets (Figs
2A and S4A and S7 Table). This search was based on the overlap of proteins from the RDPA
proteome with the PhaSEP database, which contains proteins associated with phase separation
and membraneless organelles [101]. Finally, the RDPA proteome is enriched for proteins with
both RNA binding and phase separation capabilities together (Figs 2A and S4A and S8 Table),
suggesting that these two properties are linked, as described elsewhere [43].

Phase separation is often mediated by multivalent interactions between proteins and RNA
[39,42,90]. One of the typical structural features with phase separation capacity are IDRs. It
has been shown that the nuclear proteome is enriched for proteins containing IDRs [102-
104], suggesting that nuclear proteins are prone to phase separation and thus to the formation
of biomolecular condensates. Indeed, our bioinformatic analysis revealed that the RDPA pro-
teome is significantly enriched for proteins containing IDRs among other datasets (Fig 2B and
S9 Table). These results were confirmed using three different IDR predictors, which yielded
similar results (S4B and S4C Fig).

Previously described K/R motifs have been identified as regions important for PIP2 interac-
tion [2,83]. We therefore screened our datasets for the presence of three known K/R motifs—
K/R-x(3,7)-K-x-K/R-K/R, K/R-x(3,7)-K-x-K/R and K/R-x(3,7)-K-x-K. These motifs were
abundant in the RDPA proteome, but only the K/R-x(3,7)-K-x-K/R-K/R motif (the longest
one) was significantly enriched compared to all other datasets (S5A and S5B Fig and S10
Table). Since the RDPA proteome is enriched for K/R motifs and RNA-binding proteins, and
its PIP2 association is RNA-dependent, it can be assumed that not all RDPA proteins interact
directly with PIP2. It is therefore possible that positively charged K/R motifs serve as binding
sites for negatively charged RNA molecules. Different K/R motif lengths suggest localization to
different nuclear loci and thus involvement in different processes. This effect is likely to be
manifested by different K/R content providing different affinity and thus retention time in a
particular nuclear compartment as shown elsewhere [33].

We then investigated whether these K/R motifs are localized in proteins inside or outside
the predicted IDRs. In the case of the RDPA proteome, all three motifs had a significantly
increased abundance in IDRs (Figs 2C and S5C and S11 Table). Interestingly, the longest, and
thus least permissive motif to search, showed the highest frequency in IDRs (four times higher
than outside IDRs). Based on the above data, the RDPA proteins contain PIP2-binding K/R
motifs within their IDRs and possess phase separation and RNA binding capacity.

RDPA proteins contain long hydrophilic IDRs with acidic D/E-rich and
basic K/R-rich regions

The aforementioned K/R motifs within IDRs are typical examples of multivalent interaction
modules employed in the phase separation-driven formation of biomolecular condensates
[33-35]. To determine the distribution of net charge in the IDRs, we analyzed the isoelectric
points (pI) of all predicted IDRs in the RDPA proteome. We used the Database of Disordered
Protein Predictions [82], and all nine different IDR predictors showed a similar bimodal distri-
bution pattern of IDRs (only IDRs with a minimum length of 20 amino acid residues were
considered) based on their pI (Figs 2D, S6 and S7A). The acidic peak (pI < 7) represents IDRs
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Fig 2. Bioinformatic analyses of RDPA proteome features. A) RDPA proteome is significantly enriched for RNA binding, phase separation capacity, and
combination of both properties. B) RDPA proteome is enriched for IDRs longer than 30 amino acid residues predicted by ESpritz X-Ray. C) Percentage of
PIP2-binding K/R motif sites localized in IDRs (from all K/R motif sites in the dataset) is elevated in RDPA proteome (only IDRs predicted by at least three
different predictors with minimal length 20 amino acid residues were considered). Statistical analysis was performed using a hypergeometric test (* P < 0.05, **

P < 0.01, and *** P < 0.001).

D) pI values of IDRs predicted by ESpritz X-Ray in the analyzed protein datasets show a bimodal distribution. E) The IDRs in the

“acidic” population (pI < 7) are enriched with D/E amino acid residues. F) The IDRs in the “basic” population (pI > 7) are K/R-rich. Statistical analysis was
performed using a Wilcox test (*** P < 0.001). G-I) IDRs in the RDPA proteome containing the three K/R motifs tend to be significantly longer (G), more
basic (H), and more hydrophilic (I) compared to IDRs in other datasets. Statistical analysis was performed using a pairwise Wilcox test with Benjamini-
Hochberg correction. Datasets: RDPA-proteins with positive higher-order RNA effect on their PIP2 binding (dsRNA+), Nucleo-specific—proteins identified
exclusively in the nucleus, Cytosol-specific-proteins identified exclusively in the cytosol, and Total cell proteome-all proteins identified in the nucleus and/or

cytosol.

https://doi.org/10.1371/journal.pgen.1011462.g002
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enriched in D/E amino acid residues (Figs 2E, S7B, S8A and S8C). The second peak represents
basic IDRs (pI > 7) enriched for K/R amino acid residues (Figs 2F, S7C, S8B and S8D). These
data show that IDRs have a bimodal pI distribution regardless of their cell fraction origin.
Interestingly, the D/E motif has been described as important for the negative regulation of pro-
tein condensation capacity [105,106]. Thus, PIP2-mediated recruitment of RDPA IDRs con-
taining the D/E-rich regions could have a negative effect on condensation and limit the size of
condensates formed. Therefore, PIP2 may function in defining the local concentration of
nuclear RDPA proteins and regulating their localization and condensation capacity as sug-
gested in [59].

We demonstrated that K/R motifs are more abundant within predicted IDRs than in exter-
nal structured regions (Fig 2C). Therefore, we focused our further analysis on IDRs (predicted
by at least three different predictors with a minimum length of 20 amino acid residues) con-
taining the K/R motifs. In particular, we evaluated the average length of K/R motif-containing
IDRs across different datasets. The results show that RDPA proteins have significantly longer
IDRs than other datasets, regardless of the K/R motif type analyzed (Figs 2G and S9-S11 and
S12 Table). Importantly, the RDPA and nucleo-specific proteomes are specifically significantly
enriched for two IDR types with average lengths of ~300 and ~800 amino acid residues (S11B
Fig and S13 Table). Longer IDRs are more prone to condensation due to an increased degree
of intrinsic disorder [107], i.e., a higher number of disordered amino acid residues (S12 Fig
and S9 Table).

Analyzing the pI distribution of K/R motif-containing IDRs confirmed the bimodal distri-
bution of pI found in IDRs (Fig 2D), irrespective of the K/R motif present (S13B Fig). How-
ever, the pI of K/R motif-containing IDRs is more basic than acidic (S13A Fig), consistent
with the higher abundance of K and R amino acid residues in basic IDRs (Fig 2F). As expected,
IDRs containing the longest K/R motif have a significantly higher average pI than IDRs with
shorter K/R motifs (Figs 2H, S13A and S13C and S14 Table). Furthermore, we analyzed the
hydrophobicity of these IDRs using grand average of hydropathicity (GRAVY) calculations
(Figs 21, S14 and S15A and S15 Table). All datasets have hydrophilic IDRs with mean GRAVY
values between -1.4 and -2.0, irrespective of the particular K/R motif, consistent with the
hydrophilic nature of IDRs in general [108-110]. Next, we evaluated the GRAVY distribution
between the datasets and each of the three K/R motifs (Figs 2I and S15B). The RDPA proteome
possesses K/R motif-containing IDRs with a significantly higher average hydrophilicity com-
pared to other datasets, except for the nucleo-specific proteome with the longest K/R motif.
Furthermore, IDRs with the longest K/R motif are significantly more hydrophilic than IDRs
with shorter K/R motifs, regardless of the dataset (S15A and S15C Fig and S15 Table). We sug-
gest that the multimodal distribution of GRAVY of the RDPA and cytosol-specific proteomes
(S15B Fig) is caused by lower protein counts in these datasets.

In summary, these data show that RDPA proteins specifically contain longer IDRs with
more charged amino acid residues than other datasets. This is consistent with the previous
observation that PIP2 nuclear effectors associate with charged inositol headgroups, presum-
ably via their hydrophilic protein regions [83].

Analysis of the presence of post-translational modification sites in the
RDPA proteome

Charge is a crucial parameter of the components of biomolecular condensates. The formation
of a condensate represents a metastable state when the charge is in a desirable balance. PTMs,
such as phosphorylation, often induce the collapse of this balance, ultimately leading to the dis-
solution of a condensate [40,45,111-113]. Therefore, we retrieved the known PTM sites from
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Table 2. Frequency of posttranslational modification sites within IDRs containing K/R motif.

Dataset # % of IDRs containing K/R-x(3,7)-K-x-K/R-K/R motif and PTM(s)
Acetylation Methylation Phosphorylation Ubiquitination SUMOylation
RDPA proteome 126 43.65 21.43 90.48 46.83 5.56
Nucleo-specific 349 36.68 20.34 82.23 34.38 9.74
Cytosol-specific 107 19.63 7.48 71.03 42.06 0.93
Total cell proteome 1225 35.76 19.27 79.27 46.45 12.08

#—Total number of IDRs (> 20 amino acid residues, predicted by at least three different predictors) with K/R-x(3,7)-K-x-K/R-K/R motif.

https://doi.org/10.1371/journal.pgen.1011462.t1002

the PhosphoSitePlus database [86], namely acetylation, methylation, phosphorylation,
SUMOylation, and ubiquitination, and assessed their localization in the K/R motifs containing
IDRs. Indeed, phosphorylation sites were the most abundant PTM sites across all datasets and
the three K/R motifs analyzed, with the highest incidence in the RDPA proteome (Tables 2
and S16). Phosphorylation is a very common PTM of IDRs, usually associated with a negative
effect on the propensity for phase separation [113]. It has been shown that differential phos-
phorylation of the intrinsically disordered C-terminal domain of Pol2 alters its condensation
capacity and integration into transcription initiation and splicing condensates [45,114].

Furthermore, RDPA proteome IDRs containing the K/R-x(3,7)-K-x-K/R-K/R motif were
enriched for all screened PTM sites except SUMOylation (Table 2). On the contrary, the cyto-
sol-specific proteins generally showed a low rate of acetylation, methylation, and SUMOyla-
tion PTM sites, which is in agreement with the literature [115-117]. Acetylation and
methylation are two very common modifications of histone proteins that determine chromatin
accessibility and thus the rate of transcription [118]. The subcompartmentalization of differen-
tially active chromatin is driven by the phase separation, suggesting that these PTMs are
indeed critical features that define the dynamic nuclear architecture and influence gene
expression [119,120]. The above data show that PIP2-associated IDRs are sites of intense PTM
regulation, suggesting their importance in regulating processes that depend on protein con-
densation capacity.

RDPA proteins participate in the regulation of gene expression

GO analysis provides valuable insights into the function of proteins identified by shotgun MS-
based approaches. Therefore, the biological processes in which RDPA proteins are involved
were analyzed using Metascape [71] compared to the human proteome. The results showed
that RDPA proteins are mainly involved in different stages of gene expression, including chro-
matin accessibility, RNA transcription, RNA processing, and RNA transport (Fig 3A and S17
and S18 Tables). These processes, such as Pol2 transcription, RNA processing, or RNA export
depend on the formation of distinct membraneless nuclear compartments in a process regu-
lated by RNA [29,40]. This observation is consistent with our bioinformatic data (Fig 2) as well
as with previously published data on PIP2 effectors [2,14,83,121]. Similar results were obtained
using Nuclear fraction proteins as a background instead of human proteome. In addition, pro-
teins associated with the response to dsRNA were identified in the RDPA proteome in this
comparison (S19 and S20 Tables).

To verify the GO results, we took a reverse approach and screened the human proteome for
the presence of PIP2-binding K/R motifs within the IDRs. We used a short and linear motif
discovery tool—SLiMSearch [85]—with a stringent disorder score cut-off to have a high prob-
ability of the motifs being located within the IDRs. The SLiMSearch results showed that the K/
R-x(3,7)-K-x-K/R-K/R motif was present in 29 proteins, the K/R-x(3,7)-K-x-K/R motif was
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https://doi.org/10.1371/journal.pgen.1011462.g003

present in 61 proteins and the K/R-x(3,7)-K-x-K motif was present in 43 proteins. We further

investigated whether the K/R motifs are preferentially localized in nuclear IDR-containing
proteins, as suggested by the data shown in Fig 2C. Indeed, GO localization analysis showed
that all three K/R motifs are enriched in proteins associated with nuclear components such as
nuclear speckles and nucleoli (Fig 3B). In addition, two shorter motifs were enriched for
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nuclear euchromatin and nucleosome (S16A and S17A Figs and S21, 524 and S27 Tables).
Thus, these data are consistent with our previous observations and suggest that K/R motifs
within the IDRs have specific roles in nuclear processes.

We further focused on elucidating the molecular functions of these proteins (Figs 3C, S16B
and S17B and S22, S25 and S28 Tables). Our analysis confirmed that proteins with at least one
of the three K/R motifs in the IDRs have RNA binding capacity. These data are consistent with
our bioinformatic analysis, which found that RNA binding function is enriched in the RDPA
proteome (Fig 2A). The RNA binding ability of nuclear proteins is an important feature for
the formation of biomolecular condensates, supporting the notion that RNA is the key factor
defining nuclear compartmentalization [90]. Next, we analyzed the biological processes of pro-
teins with K/R motifs containing IDRs. Processes of RNA splicing, RNA transport, ribosome
biogenesis, nucleocytoplasmic transport and regulation of signal transduction by p53 class
mediator were enriched between all motifs (Fig 3D and S23, 526 and S29 Tables). In contrast,
histone modifications, nucleosome positioning, transcription elongation from the RNA poly-
merase II promoter, and ncRNA metabolism were enriched specifically for proteins with
shorter K/R motifs in IDRs (S16C and S17C Figs and S26 and S29 Tables).

Taken together, these results are consistent with the results of the RDPA proteome bioin-
formatics and GO analyses (Figs 2A, 2C, and 3A). Interestingly, SLiMSearch data suggest that
proteins with K/R-x(3,7)-K-x-K/R-K/R motif in IDRs may have a different nuclear distribu-
tion and be involved in different processes than proteins with IDRs with shorter K/R motifs,
indicating a degree of specificity for a particular site of action. We hypothesize that different
K/R motifs may localize to different PIP2 nuclear subpopulations (nuclear speckles, nucleoli
and NLIs) and thus PIP2 acts as a molecular wedge via RNA association to attract and retain
different sets of RDPA proteins. The PIP2-dependent landscape of subnuclear localization has
recently been suggested as an important determinant of nuclear architecture [96]. A similar
dependence on K/R protein levels has been identified as an important determinant of protein
phase separation and localization [33,122]. Furthermore, a recently published study shows that
mutations in IDR-containing proteins are often associated with the formation of K/R frame
shifts that alter their phase separation capacities, leading to cancer predispositions [34]. Thus,
these data confirm that PIP2 is a key player affecting the nuclear localization of interacting
proteins.

RNA regulates the association of the RDPA protein BRD4 with PIP2

Our bioinformatic analyses revealed that RDPA proteins contain charged K/R motifs within
their IDRs, which are thought to be responsible for PIP2 recognition [2,83]. The RDPA protein
Bromodomain-containing protein 4 (BRD4) is a transcriptional regulator with the ability to
form phase-separated condensates in vitro and in vivo via its IDR [123]. To characterize the
interactions between the selected RDPA protein BRD4 and PIP2, we performed pull-down
experiments using PIP2-conjugated beads to mimic naturally occurring PIP2 structures under
different conditions. Our results showed that protein BRD4 associates with PIP2 structures in
the RNA-dependent manner, as the addition of exogenous RNA positively affected its PIP2
binding capacity (Fig 4A). Furthermore, the interactions between PIP2 and BRD4 protein are
of electrostatic nature, as increased NaCl concentration (300 mM) significantly decreased
PIP2 binding (Fig 4A). Biomolecular condensates are sensitive to increasing salt concentration
because salt ions reduce weak electrostatic interactions necessary for cohesive forces within
condensates [106,124]. NH4OAc treatment (100 mM) prevents the formation of structured
RNA folds by denaturing RNA molecules, while leaving protein structures intact [40]. This
treatment revealed that RNA-RNA interactions and the formation of higher-order folds (i.e.,
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Fig 4. PIP2-conjugated agarose beads pull-down assays from nuclear lysates with added nuclear RNA extract upon
different conditions. The PIP2 and empty control beads were incubated for 1 h at 4°C in nuclear lysates, washed, and
subjected to WB detection of BDR4 protein (A). WB signals at each pull-down condition in every repetition were
normalized to the signal at PIP2 pull-down upon RNA addition condition. Statistical analysis was performed using
Student’s t-test (n = 4). Error bars correspond to SEM. (B) GST-PLC81 PH pull-down assay testing the significance of
PIP2 pull-down results for naturally occurring PIP2-BRD4 structures. WB signals at each pull-down condition in every
repetition were normalized to the signal of GST-PLC81 PH WT domain pull-down upon RNA addition condition.
Statistical analysis was performed using Student’s t-test (n = 6). Error bars correspond to SEM. The following treatments
were used in the respective specimens as indicated in Fig 4A and 4B: the addition of 30 ug of nuclear RNA extract, 300
mM NaCl, 100 mM NH,OAc, 10% 1,6-hexanediol, and 10% dextran. (C) PIP2-conjugated beads pull-down assay with
spike-in of recombinant GST-PLC81 PH domain testing the specificity of the effect of RNA on PIP2 binding of BRD4
protein. WB signals at each pull-down condition in every repetition were normalized to the signal from the PIP2-beads
pull-down signal, wild-type GST-PLC81 PH domain, RNA addition condition. Statistical analysis was performed using
Student’s t-test (n = 4). Error bars correspond to SEM. NL-nuclear lysate, PD-pull-down, * P < 0.05, ** P < 0.001, ***
P < 0.0005.

https://doi.org/10.1371/journal.pgen.1011462.9004

dsRNA) are important prerequisites for PIP2-BRD4 protein interactions (Fig 4A). The
1,6-hexanediol is often used to dissolve protein condensates formed by phase separation in
vitro and in vivo [125], although the reliability of its use in vivo is still the subject of intense
debate. Recent studies have shown that 1,6-hexanediol may affect the chromatin state and
enzymatic functions of some proteins [126,127], making 1,6-hexanediol the drug of choice for
in vitro assays only. The 1,6-hexanediol (10%) in the pull-down reaction reduced PIP2 associa-
tion with the BRD4 protein (Fig 4A). The addition of the crowding agent dextran (10%) had
no effect on the association of PIP2 with the BRD4 protein under conditions where no RNA
was added (Fig 4A). In contrast, we observed an increased association of BRD4 with the PLC
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PH domain-conjugated beads in nuclear lysate pull-downs compared to the condition without
RNA addition, suggesting that dextran may function similarly to RNA in enhancing BRD4
association with PIP2-containing complexes (Fig 4B). In addition, we performed the experi-
ment with another RDPA protein, Cullin-associated and neddylation-dissociated protein 1
(CAND1). We observed an increased association of CAND1 with PIP2 beads induced by the
addition of dextran (S18 Fig). CAND1 was previously identified as a protein associated with
nuclear PIP2 during human papillomavirus infection [128]. Furthermore, the results of the
pull-down through the GST-PLC381 PH domain of PIP2-containing nuclear material suggest
the relevance of these observations to naturally occurring PIP2-BRD4 protein complexes

(Fig 4B).

To further test the specific effect of RNA on BRD4 protein, we set up an experiment where
we added the same amount of purified recombinant GST-tagged GST-PLCS1 PH or its mutant
variant R40A domains to the nuclear lysate as internal controls. We compared the effect of
RNA extract addition on PIP2 association with BRD4 protein and the control PH domains.
The addition of RNA extract increased the PIP2 association of BRD4 protein, whereas the
association of the GST-PLC81 PH domain with PIP2 was decreased under these conditions
(Fig 4C and 4D). These results suggest that the same amount of RNA that stimulates PIP2 asso-
ciation with K/R IDR-containing BRD4 proteins negatively affects PIP2 recognition by the
canonical PIPs-binding PH domain. Thus, RNA appears to act as a local scaffold rather than a
non-specific crowding agent. Furthermore, the R40A mutated PH domain did not bind to
PIP2 beads in the presence of RNA and had no effect on BRD4-PIP2 association (Fig 4C). In
addition, we provided evidence that the bivalent Mg>* ions potentiate BRD4-PIP2 binding in
the presence of RNA. Increasing the amount of this cation in the PIP2 bead pull-down sample
led to a gradual increase in BRD4 binding, suggesting that this is an important prerequisite for
the association (S19 Fig). Interestingly, high Mg>" concentration (50 mM) led to a dramatic
decrease in BRD4 binding, suggesting that there is a saturation point above which the ion mol-
ecules have a negative effect on binding. Based on these data, we hypothesize that the struc-
tured higher-order RNA binds PIP2 via Mg** and attracts the BRD4 protein, thus locally
increasing its concentration and eventually leading to the formation of a condensate in the
vicinity of a PIP2-containing surface. In addition, we tested the binding capacity of BRD4 to
all existing PIPs in a pull-down experiment using PIP-conjugated agarose beads. Our results
showed the highest association of BRD4 with PI(4,5)P2, and also small but significant binding
to PI(3,4,5)P3 and to PI(5)P in the presence of RNA, suggesting a putative weak binding pro-
miscuity (520 Fig).

BRD4 protein foci cluster in the vicinity to PIP2-containing nuclear
structures

Nuclear PIP2 localizes to transcriptionally relevant compartments—nuclear speckles, NLIs,
and nucleoli [11]. Therefore, we investigated the localization of the transcriptional regulator
BRD4 in relation to nuclear PIP2 structures. To visualize the detailed localization of BRD4, we
used super-resolution microscopy, which has recently been successfully applied to assess the
co-patterning of nuclear proteins with PIP2 [96]. Our data showed that BRD4 formed foci in a
dispersed pattern inside the nucleus (Fig 5A). We analyzed the colocalization of the signal of
BRD4 protein with the PIP2 signal and compared the real data with the data randomized by
rotating one channel with respect to the second channel [61]. Pearson’s, Spearman’s, and Man-
ders’ coefficients were used to test signal colocalization and spatial co-distribution. Pearson’s
coefficient measures the degree of correlative variation between the two channels while Spear-
man’s coefficient detects the mutual dependencies of two channel signals and thus measures
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Fig 5. Localization of BRD4 in relation to PIP2 and changes in the number of BRD4 foci induced by the manipulation of PIP2 levels, visualized by super-
resolution and confocal microscopy. (A) Representative images of immunofluorescence staining for BRD4 and PIP2 using specific antibodies show the
localization of this protein in the vicinity of PIP2 in the nuclei of U20S cells. Images were acquired by structured illumination microscopy (SIM). The inset
shows a detail of BRD4 and PIP2 localization at a nucleoplasmic region within the U20S cell nucleus (yellow square). Scale bars correspond to 5 pum and 1 pm
resp. (inset). B) Statistical analysis of colocalization parameters by Pearson’s, Spearman’s, and Manders’ coefficients M1 and M2 compared to randomized
images was performed using Student’s t-tests. Error bars correspond to SEM (** P < 0.005, *** P < 0.001, **** P < 0.0001), n = 3, N = 34 cells. (C) U20S cells
with decreased PIP2 levels by depletion of PIP5KA and increased PIP2 levels by depletion of SHIP2, respectively. Representative images show the localization
of PIP2 and BRD4 using immunofluorescence staining. The last column shows the identified foci used for quantification of representative images in false red
color, which does not represent the intensity of the signal. Scale bars correspond to 5 um. D) The chart visualizes the average number of BRD4 foci identified
per cell in knock-down (KD) control, KD PIP5KA, and KD SHIP2 U20S cells. Statistical analysis was performed using Student’s t-tests (** P < 0.005; ****

P < 0.0001), n = 4, N = 37 KD control cells, KD PIP5KA N = 44 cells, and KD SHIP2 N = 50 cells. Error bars correspond to SEM.

https://doi.org/10.1371/journal.pgen.1011462.9005
the statistical association between these two channel signals. The Manders’ M1 and M2 coeffi-

cients measure the proportion of the intensity in each channel that coincides with an intensity
in the other channel. The M1 and M2 coefficients are less dependent on the actual intensity
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ratios between the channels. Statistical analysis of the data revealed very limited colocalization
of BRD4 protein with nuclear PIP2, but BRD4 rather clusters in the vicinity of PIP2 (Fig 5B).

Number of BRD4 protein foci correlates with nuclear PIP2 levels

Based on the data presented so far, we propose that nuclear PIP2 attracts RDPA proteins con-
taining K/R motifs, leading to their localization in the vicinity to PIP2-enriched areas. There-
fore, the localization patterns of BRD4 protein should vary under conditions of different
nuclear PIP2 levels. To test the effect of varying PIP2 levels on the localization of BRD4 pro-
tein, we experimentally increased nuclear PIP2 levels by depleting SHIP2 phosphatase and
conversely decreased PIP2 levels by depleting PIP5KA (S21A Fig).

Image analysis and quantification of the microscopy data showed that increased PIP2 levels
increased the number of BRD4 nuclear foci (Fig 5C and 5D). This effect may help to explain
the importance of nuclear PIP2 in transcription and Pol2 condensation described elsewhere
[11,14]. The total protein level of BRD4 was slightly lowered upon SHIP2 depletion, suggesting
that increase in BRD4 protein foci number is not due to increased total protein concentration,
but rather due to changes in its local level (S21B Fig). To exclude the possibility of an indirect
effect of siRNA-mediated depletion on BRD4, we used SHIP2 inhibitors (K149), which
increased nuclear PIP2 levels (S22 Fig). These data are consistent with siRNA depleted SHIP2
since BRD4 foci number were increased upon SHIP2 inhibition (522 Fig) and suggest that the
changes in BRD4 foci are indeed in correlation to nuclear PIP2 levels and not an indirect result
of depletion of the SHIP2 enzyme. In addition, we tested the role of RNA in the formation of
BRDA4 foci. We recapitulated our experimental setup where RNase III was used to treat semi-
permeabilized cells and measured the number of BRD4 condensates within the nucleus. These
results showed that the number of BRD4 foci decreased upon removal of higher order RNA
(523 Fig). These data are consistent with the previously observed effect of RNA on the conden-
sation capacity of BRD4 in vitro [40] and suggest that both higher-order RNA and nuclear
PIP2 must be in fine balance to ensure that the correct number of BRD4 foci is formed.

Altogether our data indicate that the levels of nuclear PIP2 and higher-order RNA do
indeed influence the formation or stability of BRD4 protein foci, presumably by altering their
local concentration. The presence of an amphiphilic molecule in the nuclear environment has
been proposed to explain the formation of so-called microemulsions, which are typically orga-
nized in nuclear processes [129]. Based on our data, we propose that nuclear PIP2 regulates
the affinity between RNA and BRD4 protein. This interaction defines the areas of foci forma-
tion, thus orchestrating nuclear subcompartmentalization and leading to efficient gene expres-
sion. Our data are consistent with the recently published work in which the authors describe,
among other fundamental findings, the effect of PIPs on the quantity, size and morphology of
condensates in an in vitro system [59]. This model brings new perspectives to another recent
observation that carcinogenic human papillomavirus (HPV) infection increases nuclear PIP2
levels in human wart samples [97]. Thus, we provide mechanistic insights into the real biologi-
cal implications of this phenomenon.

In conclusion, we have shown that nuclear PIP2 localization is dependent on the presence
of higher-order RNA and identified RDPA proteins that associate with nuclear PIP2 in a
higher-order RNA-dependent manner. To this end, we developed and optimized a MS-based
experimental pipeline that can be applied to other nuclear lipid-protein interactors. Our results
showed that interactions between RDPA protein BRD4 and PIP2 are mediated by electrostatic
interactions, presumably via the enriched K/R motifs within the IDRs. The PIP2-binding func-
tion of such K/R motifs has been described previously [3,83]. Based on our bioinformatics
analysis, we have shown that more than half of the RDPA proteins have experimentally
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demonstrated RNA binding capacity and are associated with the process of phase separation.
We found that IDRs have a bimodal distribution of pI, and we provide bioinformatic tools for
their convenient analyses. We also showed that IDRs of RDPA proteins are longer and more
hydrophilic. The K/R motif-containing IDRs of RDPA proteins are enriched for known phos-
phorylation, acetylation, and ubiquitination sites, possibly providing an additional level of reg-
ulation for their integration into phase-separated condensates. GO analysis revealed that
RDPA proteins are involved in RNA transcription, RNA processing and transport, translation,
cell cycle regulation, histone modification, and chromatin maintenance. The involvement of
proteins containing IDRs with K/R motifs in similar processes was confirmed by our SLIM-
search analysis. We showed the localization of RDPA protein BRD4 with respect to nuclear
PIP2 structures. Finally, we have shown that increased levels of nuclear PIP2 lead to an
increased number of BRD4 foci and conversely, the removal of higher-order RNA leads to a
decreased number of BRD4 foci.

Supporting information

S1 Fig. The effect of RNase III treatment on PIP2 and SON localization in non-permeabi-
lized cell nuclei visualized by immunofluorescence staining. (A) U20S cells were treated by
RNase III without a semi-permeabilization step, and subsequently stained with PIP2 and
SON:-specific antibodies. Images were acquired by fluorescence microscopy. B) Quantification
of normalized mean PIP2 signal intensity levels after RNase III treatment in segmented nuclei
for nuclear speckles (Sp) and nucleoplasm (Np) regions without semi-permeabilization step
(orange bars) compared to mock and RNase III-treated semi-permeabilized U20S cells (Fig
1C). Scale bars correspond to 5 um. Statistical analysis was performed using Student’s t-tests.
Error bars correspond to SEM (**** P < 0.0001), n = 3, N = 76 mock-treated cells, N = 89
RNase III-treated semi-permeabilized cells, N = 58 RNase III-treated non-permeabilized cells.
(PDF)

S$2 Fig. Localization of PIP2 signals visualized by the combination of specific antibody and
GST-tagged GST-PLCS1 PH domain in U20S cell nucleus. (A) Representative images of
immunofluorescence staining for PIP2 using specific antibody and anti-GST antibody to visu-
alize the PLC81 PH domain signal show the colocalization of PIP2 in the nuclei of U20S cells.
Images were captured by confocal microscopy. Scale bars correspond to 5 um. B) Statistical
analysis of colocalization parameters by Pearson’s, Spearman’s and Manders’ coefficients M1
and M2 compared to random images was performed using Student’s t-tests. Error bars corre-
spond to SEM (**** P < 0.0001), n = 3, N = 34 cells.

(PDF)

83 Fig. Overview and overlaps between the datasets as identified by mass spectrometry analy-
ses (A-C). Numbers represent proteins from Majority protein IDs mapped to UniProt (release
2022_01). Datasets Nucleo-specific proteins (A), Nuclear fraction proteins (B) and Total cell
proteome (C) were supplemented by missing RDPA proteins (for more information see S3
and S4 Tables). The modified datasets were then used for the bioinformatic analyses presented
in this study (related to Fig 2).

(PDF)

$4 Fig. Additional bioinformatic analyses of RDPA proteome features (related to Fig 2A
and 2B). A) RDPA proteome is significantly enriched for RNA-binding, phase separation
capacity, and combination of both properties. B-C) RDPA proteome is enriched for IDRs lon-
ger than 30 amino acid residues predicted by ESpritz X-Ray (X-Ray), ESpritz Disprot (Dis-
prot), and ESpritz NMR (NMR). Statistical analysis was performed using a hypergeometric
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test (ns not significant, * P < 0.05, ** P < 0.01, and *** P < 0.001).
(PDF)

S5 Fig. Additional bioinformatic analyses of RDPA proteome features (related to Fig 2C).
A-B) Enrichment of K/R motifs in the RDPA proteome. These motifs were abundantly present
in the RDPA proteome, but only the K/R-x(3,7)-K-x-K/R-K/R motif (the longest one) was sig-
nificantly enriched, compared to all other datasets. C) Percentage of PIP2-binding K/R motif
sites localized in IDRs (from all K/R motif sites in the dataset) is elevated in RDPA proteome
(only IDRs predicted by at least three different predictors with minimal length 20 amino acid
residues were considered). Statistical analysis was performed using a hypergeometric test (*

P < 0.05, ** P < 0.01, and *** P < 0.001).

(PDF)

S6 Fig. Additional bioinformatic analysis of RDPA proteome features (relevant to Fig 2D).
Bimodal pl distribution of IDRs predicted by nine different IDR predictors (Database of Dis-
ordered Protein Predictions - https://d2p2.pro/). Only IDRs with minimal length of 20 amino
acid residues were considered.

(PDF)

S7 Fig. Additional bioinformatic analyses of RDPA proteome features (relevant to Fig 2D-
2F). A) pl values of IDRs predicted by ESpritz X-Ray in the analyzed protein datasets show a
bimodal distribution. B) The IDRs in the “acidic” population (pI < 7) are enriched with D/E
amino acid residues. C) The IDRs in the “basic” population (pI > 7) are K/R-rich.

(PDF)

S8 Fig. Additional bioinformatic analyses of RDPA proteome features (relevant to Fig 2E
and 2F). A-B) Distribution of the numbers of acidic (A) and basic (B) residues in IDRs pre-
dicted by nine different IDR predictors (Database of Disordered Protein Predictions; only
IDRs with minimal length of 20 amino acid residues were considered) in the “main” datasets.
C-D) Distribution of the numbers of acidic (C) and basic (D) residues in IDRs predicted by
nine different IDR predictors (Database of Disordered Protein Predictions; only IDRs with
minimal length of 20 amino acid residues were considered) in the “additional” datasets.
(PDF)

S9 Fig. Additional bioinformatic analysis of RDPA proteome features (relevant to Fig 2D
and 2G). A-C) Distribution of the log2 transformed length of all IDRs (A) or IDRs that were
acidic (pI < 7) (B) or basic (pI > 7) (C) and predicted by nine different IDR predictors (Data-
base of Disordered Protein Predictions; only IDRs with minimal length of 20 amino acid resi-
dues were considered) in the “main” datasets.

(PDF)

$10 Fig. Additional bioinformatic analysis of RDPA proteome features (relevant to Fig 2D
and 2G). A-C) Distribution of the log2 transformed length of all IDRs (A) or IDRs that were
acidic (pI < 7) (B) or basic (pI > 7) (C) and predicted by nine different IDR predictors (Data-
base of Disordered Protein Predictions; only IDRs with minimal length of 20 amino acid resi-
dues were considered) in the “additional” datasets.

(PDF)

S11 Fig. Additional bioinformatic analysis of RDPA proteome features (relevant to Fig
2G). A-C) RDPA proteins IDRs containing the three K/R motifs tend to be significantly longer
compared to the other six datasets. A) Boxplots show the distributions of log10 transformed
length. B) Density plots of the IDR lengths highlight the presence of two populations of longer
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IDRs in the RDPA proteome and Nucleo-specific proteins (red arrows). C) The P values of all
pairwise comparisons between the datasets and motifs were estimated by a pairwise Wilcox
test. Benjamini-Hochberg correction was applied to correct for multiple hypothesis testing.
Ref.-reference, prot.—proteome, fr.-fraction, spec.-specific.

(PDF)

S12 Fig. Additional bioinformatic analysis of RDPA proteome features (relevant to Fig 2B
and 2G). The percentage of disordered amino acid residues in IDRs predicted by ESpritz
X-Ray (X-Ray), ESpritz Disprot (Disprot), and ESpritz NMR (NMR) in the “main” (A) and
“additional” (B) datasets. Statistical analysis was performed using a hypergeometric test (***
P < 0.001).

(PDF)

$13 Fig. Additional bioinformatic analysis of RDPA proteome features (relevant to Fig
2H). A) Boxplots show the distributions of pI values of IDRs between datasets and K/R motifs.
B) Density plots of the IDR pI values highlight the presence of bimodal distributions. C) The P
values of all pairwise comparisons between the datasets and motifs were estimated by a pair-
wise Wilcox test. Benjamini-Hochberg correction was applied to correct for multiple hypothe-
sis testing. Ref.-reference, prot.—proteome, fr.—fraction, spec.-specific.

(PDF)

S14 Fig. Additional bioinformatic analysis of RDPA proteome features (relevant to Fig
2I). A-B) Distribution of the GRAVY scores of IDRs predicted by nine different IDR predic-
tors (Database of Disordered Protein Predictions; only IDRs with minimal length of 20 amino
acid residues were considered) in the “main” (A) and “additional” (B) datasets.

(PDF)

S15 Fig. Additional bioinformatic analysis of RDPA proteome features (relevant to Fig
2I). A) Boxplots show the distributions of the GRAVY score of IDRs between datasets and K/
R motifs. B) Density plots of the IDR GRAVY scores. C) The P values of all pairwise compari-
sons between the datasets and motifs were estimated by a pairwise Wilcox test. Benjamini-
Hochberg correction was applied to correct for multiple hypothesis testing. Ref.-reference,
prot.—proteome, fr.—fraction, spec.—specific.

(PDF)

S16 Fig. Functional analysis of the RDPA proteome (relevant to Fig 4B-4D). A-C) Gene
ontology (GO) analysis of human proteins containing K/R-x(3,7)-K-x-K/R motif in IDRs
using SLiMSearch tool based on (A) cellular compartment (GOCC), (B) molecular function
(GOMF), and (C) biological process (GOBP). The y-axis shows the -log10 adjusted p-value
(Fisher’s exact test) of proteins from a GO category, the x-axis shows the log2 enrichment fac-
tor. The size of the bubble corresponds to the number of proteins.

(PDF)

$17 Fig. Functional analysis of the RDPA proteome (relevant to Fig 4B-4D). A-C) Gene
ontology (GO) analysis of human proteins containing K/R-x(3,7)-K-x-K motif in IDRs using
SLiMSearch tool based on (A) cellular compartment (GOCC), (B) molecular function
(GOMF), and (C) biological process (GOBP). The y-axis shows the -log10 adjusted p-value
(Fisher’s exact test) of proteins from a GO category, the x-axis shows the log2 enrichment fac-
tor. The size of the bubble corresponds to the number of proteins.

(PDF)
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S18 Fig. PIP2-conjugated agarose beads pull-down assays from nuclear lysates with added
nuclear RNA extract upon different conditions. The PIP2 and empty control beads were
incubated for 1 h at 4°C in nuclear lysates, washed, and subjected to WB detection of CAND1
protein. WB signals at each pull-down condition in every repetition were normalized to the
signal at PIP2 pull-down upon RNA addition condition. Statistical analysis was performed
using Student’s t-test (n = 3). Error bars correspond to SEM (NL-nuclear lysate, * P < 0.05, **
P < 0.001, *** P < 0.0005, **** P < 0.0001). The following treatments were used in the respec-
tive specimens as indicated in Fig 4A and 4B: the addition of 30 pg of nuclear RNA extract,
300 mM NaCl, 100 mM NH,OAc, 10% 1,6-hexanediol, and 10% dextran.

(PDF)

S19 Fig. PIP2-conjugated agarose beads pull-down assays from nuclear lysates with the
addition of 30 ug nuclear RNA extract at increasing concentrations of Mg>*. PIP2 beads
were incubated in nuclear lysates for 1 h at 4°C, washed, and subjected to WB detection of
BRD4 protein. WB signals for each pull-down condition in each replicate were normalized to
the highest signal (25 mM Mg>"). Statistical analysis was performed by Student’s t-test (n = 3).
Error bars correspond to SEM.

(PDF)

$20 Fig. Different PIPs-conjugated agarose beads pull-down assays from nuclear lysates
with the addition of 30 pg nuclear RNA extract. PIPs and control empty beads were incu-
bated in nuclear lysates for 1 h at 4°C, washed, and subjected to WB detection of BRD4 pro-
tein. WB signals for each pull-down condition in each replicate were normalized to the highest
signal (PI(4,5)P2). Statistical analysis was performed by Student’s t-test (n = 4). Error bars cor-
respond to SEM (** P < 0.001, **** P < 0.0001).

(PDF)

$21 Fig. Manipulation of PIP2 level by PIP5KA and SHIP2 knock-down (relevant to Fig 5C
and 5D). (A) Microscopy confirmation of the manipulation of PIP2 levels induced by deple-
tion of PIP5KA and SHIP2 enzymes. Statistical analysis was performed using Student’s t-tests
(**** P < 0.0001), n = 3,n = 4, N = 37 KD control cells, KD PIP5KA N = 44, and KD SHIP2
N = 50 cells, respectively). Error bars correspond to SEM. (B) WB analysis of the efficacy of
PIP5KA and SHIP2 siRNA depletion and its effect on BRD4 protein levels.

(PDF)

$22 Fig. Confocal microscopy visualization of changes in the number of BRD4 foci
induced by SHIP2 inhibition. (A) Representative figures show the localization of PIP2 and
BRD4 using immunofluorescence staining. The last column shows the identified foci in false
red color, which does not represent the intensity of the signal. Scale bars correspond to 5 um.
B) Quantification of PIP2 levels upon K149 treatment in U20S cells. (C) The chart visualizes
the average number of BRD4 foci identified per cell in control and SHIP2 inhibited U20S
cells. Statistical analysis was performed using Student’s t-tests (**** P < 0.0001), n = 5, N = 56
control cells, N = 62 SHIP2 inhibited cells). Error bars correspond to SEM.

(PDF)

$23 Fig. Changes in the number of BRD4 foci induced by the RNase III treatment in semi-
permeabilized U20S cells visualized by confocal microscopy. (A) Representative figures
show the localization of PIP2 and BRD4 using immunofluorescence staining. The last column
shows the identified foci in false red color, which does not represent the intensity of the signal.
Scale bars correspond to 5 pm. B) The chart visualizes the average number of BRD4 foci iden-
tified per cell in non-treated and RNase III treated semi-permeabilized U20S cells. Statistical
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analysis was performed using Student’s t-tests (**** P < 0.0001), n = 4, N = 46 non-treated
cells, N = 64 RNase III treated cells). Error bars correspond to SEM.
(PDF)

S$1 Table. Quantifiable proteins from mass spectrometry analysis of RNA-dependent
PIP2-associated (RDPA) nuclear proteome.
(XLSX)

$2 Table. Quantifiable proteins from mass spectrometry analysis of nuclear fraction and
cytosolic fraction proteomes.
(XLSX)

S3 Table. Protein datasets employed for bioinformatics.
(XLSX)

$4 Table. UniProtKB accession numbers for protein datasets employed for bioinformatics.
(XLSX)

S5 Table. Proteins with PIP2-binding domain(s) in analysed datasets.
(XLSX)

S6 Table. RNA-binding proteins in analysed datasets.
(XLSX)

S$7 Table. Proteins connected with phase separation or membraneless organelles in ana-
lysed datasets.
(XLSX)

S8 Table. RNA-binding proteins connected with phase separation or membraneless organ-
elles in analysed datasets.
(XLSX)

S9 Table. Prediction of intrinsically disordered regions in proteins of analysed datasets.
(XLSX)

S10 Table. Presence of K/R motifs in proteins of analysed datasets.
(XLSX)

S11 Table. Presence of K/R motifs in intrinsically disordered regions of proteins of ana-
lysed datasets.
(XLSX)

$12 Table. Analysis of lengths of intrinsically disordered regions containing K/R motifs.
(XLSX)

$13 Table. Analysis of specific enrichment of longer intrinsically disordered regions con-
taining K/R motifs between datasets.
(XLSX)

S14 Table. Analysis of isoelectric points of intrinsically disordered regions containing K/R
motifs.
(XLSX)

S15 Table. Analysis of hydrophobicity of intrinsically disordered regions containing K/R
motifs.
(XLSX)
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